File size: 735 Bytes
d58ac58
ac94249
 
bce3703
ac94249
 
 
 
 
 
d58ac58
ac94249
 
 
 
 
 
 
 
 
ce05317
ac94249
 
 
 
 
 
ce05317
ac94249
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from diffusers import StableDiffusionInpaintPipeline
import torch

pipeline = StableDiffusionInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    torch_dtype=torch.float16,
)
 
pipeline = pipeline.to("cuda")

def predict(mask_img):
    prompt = "a green frog, highly detailed, natural lighting"
    image = pipeline(prompt=prompt,
                     num_inference_steps=35,
                     image=mask_img["image"], 
                     mask_image=mask_img["mask"], 
                     guidance_scale=9).images[0]
     
    return image

demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(),
    outputs=gr.Image(),
    title="Stable Diffusion Inpainting"
)

demo.launch()