File size: 916 Bytes
d58ac58
ac94249
 
bce3703
ac94249
4b1eeea
4666901
2950d3f
 
ac94249
 
2d19487
d58ac58
ac94249
 
 
84bc0a5
e3a1cf3
 
84bc0a5
 
ac94249
 
ce05317
ac94249
 
f863024
ac94249
 
 
ce05317
ac94249
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from diffusers import StableDiffusionInpaintPipeline
import torch

pipeline = StableDiffusionInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16"
)
 
pipeline = pipeline.to("cuda")

def predict(mask_img):
    prompt = "a green frog, highly detailed, natural lighting"
    image = pipeline(prompt=prompt,
                     #num_inference_steps=35,
                     image=mask_img["image"].convert("RGB").resize((512, 512)), 
                     mask_image=mask_img["mask"].convert("RGB").resize((512, 512)) 
                     #guidance_scale=9
                    ).images[0]
     
    return image

demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(source = 'upload', tool = 'sketch', type='pil'),
    outputs=gr.Image(),
    title="Stable Diffusion Inpainting"
)

demo.launch()