Spaces:
Runtime error
Runtime error
DeDeckerThomas
commited on
Commit
Β·
8339421
1
Parent(s):
55b038b
Fix last bugs with annotation system
Browse files
app.py
CHANGED
@@ -7,30 +7,11 @@ import orjson
|
|
7 |
from annotated_text.util import get_annotated_html
|
8 |
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
|
9 |
import re
|
|
|
10 |
import numpy as np
|
11 |
|
12 |
|
13 |
-
|
14 |
-
with open("config.json", "r") as f:
|
15 |
-
content = f.read()
|
16 |
-
st.session_state.config = orjson.loads(content)
|
17 |
-
st.session_state.data_frame = pd.DataFrame(columns=["model"])
|
18 |
-
st.session_state.keyphrases = []
|
19 |
-
|
20 |
-
st.set_page_config(
|
21 |
-
page_icon="π",
|
22 |
-
page_title="Keyphrase extraction/generation with Transformers",
|
23 |
-
layout="wide",
|
24 |
-
)
|
25 |
-
|
26 |
-
if "select_rows" not in st.session_state:
|
27 |
-
st.session_state.selected_rows = []
|
28 |
-
|
29 |
-
st.header("π Keyphrase extraction/generation with Transformers")
|
30 |
-
col1, col2 = st.empty().columns(2)
|
31 |
-
|
32 |
-
|
33 |
-
@st.cache(allow_output_mutation=True)
|
34 |
def load_pipeline(chosen_model):
|
35 |
if "keyphrase-extraction" in chosen_model:
|
36 |
return KeyphraseExtractionPipeline(chosen_model)
|
@@ -67,18 +48,38 @@ def extract_keyphrases():
|
|
67 |
def get_annotated_text(text, keyphrases):
|
68 |
for keyphrase in keyphrases:
|
69 |
text = re.sub(
|
70 |
-
|
71 |
-
|
72 |
text,
|
73 |
flags=re.I,
|
|
|
74 |
)
|
75 |
|
76 |
result = []
|
77 |
for i, word in enumerate(text.split(" ")):
|
78 |
-
if
|
79 |
-
|
80 |
-
|
81 |
-
result.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
else:
|
83 |
if i == len(st.session_state.input_text.split(" ")) - 1:
|
84 |
result.append(f" {word}")
|
@@ -113,12 +114,39 @@ def rerender_output(layout):
|
|
113 |
],
|
114 |
)
|
115 |
|
116 |
-
result = get_annotated_text(text, keyphrases)
|
117 |
|
118 |
layout.markdown(
|
119 |
get_annotated_html(*result),
|
120 |
unsafe_allow_html=True,
|
121 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
chosen_model = col1.selectbox(
|
@@ -127,14 +155,17 @@ chosen_model = col1.selectbox(
|
|
127 |
)
|
128 |
st.session_state.chosen_model = chosen_model
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
)
|
|
|
|
|
133 |
|
134 |
st.session_state.input_text = col1.text_area(
|
135 |
"Input", st.session_state.config.get("example_text"), height=300
|
136 |
-
)
|
137 |
-
|
|
|
138 |
|
139 |
|
140 |
if len(st.session_state.data_frame.columns) > 0:
|
|
|
7 |
from annotated_text.util import get_annotated_html
|
8 |
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
|
9 |
import re
|
10 |
+
import string
|
11 |
import numpy as np
|
12 |
|
13 |
|
14 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def load_pipeline(chosen_model):
|
16 |
if "keyphrase-extraction" in chosen_model:
|
17 |
return KeyphraseExtractionPipeline(chosen_model)
|
|
|
48 |
def get_annotated_text(text, keyphrases):
|
49 |
for keyphrase in keyphrases:
|
50 |
text = re.sub(
|
51 |
+
rf"({keyphrase})([^A-Za-z])",
|
52 |
+
rf"$K:{keyphrases.index(keyphrase)}\2",
|
53 |
text,
|
54 |
flags=re.I,
|
55 |
+
count=1
|
56 |
)
|
57 |
|
58 |
result = []
|
59 |
for i, word in enumerate(text.split(" ")):
|
60 |
+
if "$K" in word and re.search(
|
61 |
+
"(\d+)$", word.translate(str.maketrans("", "", string.punctuation))
|
62 |
+
):
|
63 |
+
result.append(
|
64 |
+
(
|
65 |
+
re.sub(
|
66 |
+
r"\$K:\d+",
|
67 |
+
keyphrases[
|
68 |
+
int(
|
69 |
+
re.search(
|
70 |
+
"(\d+)$",
|
71 |
+
word.translate(
|
72 |
+
str.maketrans("", "", string.punctuation)
|
73 |
+
),
|
74 |
+
).group(1)
|
75 |
+
)
|
76 |
+
],
|
77 |
+
word,
|
78 |
+
),
|
79 |
+
"KEY",
|
80 |
+
"#21c354",
|
81 |
+
)
|
82 |
+
)
|
83 |
else:
|
84 |
if i == len(st.session_state.input_text.split(" ")) - 1:
|
85 |
result.append(f" {word}")
|
|
|
114 |
],
|
115 |
)
|
116 |
|
117 |
+
result = get_annotated_text(text, list(keyphrases))
|
118 |
|
119 |
layout.markdown(
|
120 |
get_annotated_html(*result),
|
121 |
unsafe_allow_html=True,
|
122 |
)
|
123 |
+
if "generation" in st.session_state.chosen_model:
|
124 |
+
abstractive_keyphrases = [
|
125 |
+
keyphrase
|
126 |
+
for keyphrase in keyphrases
|
127 |
+
if keyphrase.lower() not in text.lower()
|
128 |
+
]
|
129 |
+
layout.write(", ".join(abstractive_keyphrases))
|
130 |
+
|
131 |
+
|
132 |
+
if "config" not in st.session_state:
|
133 |
+
with open("config.json", "r") as f:
|
134 |
+
content = f.read()
|
135 |
+
st.session_state.config = orjson.loads(content)
|
136 |
+
st.session_state.data_frame = pd.DataFrame(columns=["model"])
|
137 |
+
st.session_state.keyphrases = []
|
138 |
+
|
139 |
+
if "select_rows" not in st.session_state:
|
140 |
+
st.session_state.selected_rows = []
|
141 |
+
|
142 |
+
st.set_page_config(
|
143 |
+
page_icon="π",
|
144 |
+
page_title="Keyphrase extraction/generation with Transformers",
|
145 |
+
layout="wide",
|
146 |
+
)
|
147 |
+
|
148 |
+
st.header("π Keyphrase extraction/generation with Transformers")
|
149 |
+
col1, col2 = st.columns(2)
|
150 |
|
151 |
|
152 |
chosen_model = col1.selectbox(
|
|
|
155 |
)
|
156 |
st.session_state.chosen_model = chosen_model
|
157 |
|
158 |
+
with st.spinner("Loading pipeline..."):
|
159 |
+
pipe = load_pipeline(
|
160 |
+
f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}"
|
161 |
+
)
|
162 |
+
|
163 |
|
164 |
st.session_state.input_text = col1.text_area(
|
165 |
"Input", st.session_state.config.get("example_text"), height=300
|
166 |
+
).replace("\n", " ")
|
167 |
+
with st.spinner("Extracting keyphrases..."):
|
168 |
+
pressed = col1.button("Extract", on_click=extract_keyphrases)
|
169 |
|
170 |
|
171 |
if len(st.session_state.data_frame.columns) > 0:
|
pipelines/__pycache__/keyphrase_generation_pipeline.cpython-39.pyc
CHANGED
Binary files a/pipelines/__pycache__/keyphrase_generation_pipeline.cpython-39.pyc and b/pipelines/__pycache__/keyphrase_generation_pipeline.cpython-39.pyc differ
|
|