Spaces:
Runtime error
Runtime error
Thomas De Decker
commited on
Commit
Β·
aab5966
1
Parent(s):
8d04b0f
Update description + Fix highlight bugs
Browse files
app.py
CHANGED
@@ -17,9 +17,13 @@ def load_pipeline(chosen_model):
|
|
17 |
return KeyphraseGenerationPipeline(chosen_model, truncation=True)
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
20 |
def extract_keyphrases():
|
21 |
st.session_state.keyphrases = pipe(st.session_state.input_text)
|
22 |
-
st.session_state.history[
|
23 |
"run_id": st.session_state.current_run_id,
|
24 |
"model": st.session_state.chosen_model,
|
25 |
"text": st.session_state.input_text,
|
@@ -31,7 +35,7 @@ def extract_keyphrases():
|
|
31 |
def get_annotated_text(text, keyphrases, color="#d294ff"):
|
32 |
for keyphrase in keyphrases:
|
33 |
text = re.sub(
|
34 |
-
rf"({keyphrase})([^A-Za-
|
35 |
rf"$K:{keyphrases.index(keyphrase)}\2",
|
36 |
text,
|
37 |
flags=re.I,
|
@@ -83,17 +87,6 @@ def render_output(layout, runs, reverse=False):
|
|
83 |
unsafe_allow_html=True,
|
84 |
)
|
85 |
|
86 |
-
if "generation" in run.get("model"):
|
87 |
-
abstractive_keyphrases = [
|
88 |
-
keyphrase
|
89 |
-
for keyphrase in run.get("keyphrases")
|
90 |
-
if keyphrase.lower() not in run.get("text").lower()
|
91 |
-
]
|
92 |
-
layout.markdown(
|
93 |
-
f"<p style=\"margin-bottom: 0rem\"><strong>Absent keyphrases:</strong> {', '.join(abstractive_keyphrases) if abstractive_keyphrases else 'None' }</p>",
|
94 |
-
unsafe_allow_html=True,
|
95 |
-
)
|
96 |
-
|
97 |
result = get_annotated_text(run.get("text"), list(run.get("keyphrases")))
|
98 |
layout.markdown(
|
99 |
f"""
|
@@ -102,6 +95,20 @@ def render_output(layout, runs, reverse=False):
|
|
102 |
""",
|
103 |
unsafe_allow_html=True,
|
104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
layout.markdown("---")
|
106 |
|
107 |
|
@@ -125,32 +132,36 @@ with open("css/style.css") as f:
|
|
125 |
st.header("π Keyphrase extraction/generation with Transformers")
|
126 |
|
127 |
description = """
|
128 |
-
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
139 |
and O (Outside a keyhprase).
|
140 |
|
141 |
-
While keyphrase extraction
|
142 |
-
work a bit differently. Here you use an encoder-decoder model
|
143 |
-
These models also have the ability to generate keyphrases, which are not present in the text π€―.
|
|
|
144 |
|
145 |
-
|
146 |
"""
|
147 |
|
148 |
st.write(description)
|
149 |
|
150 |
with st.form("keyphrase-extraction-form"):
|
151 |
-
|
152 |
-
|
153 |
-
st.session_state.chosen_model = selectbox_container.selectbox(
|
154 |
"Choose your model:", st.session_state.config.get("models")
|
155 |
)
|
156 |
|
@@ -170,7 +181,8 @@ with st.form("keyphrase-extraction-form"):
|
|
170 |
)
|
171 |
|
172 |
with st.spinner("Extracting keyphrases..."):
|
173 |
-
|
|
|
174 |
|
175 |
if pressed and st.session_state.input_text != "":
|
176 |
with st.spinner("Loading pipeline..."):
|
@@ -182,13 +194,12 @@ if pressed and st.session_state.input_text != "":
|
|
182 |
elif st.session_state.input_text == "":
|
183 |
st.error("The text input is empty π Please provide a text in the input field.")
|
184 |
|
185 |
-
options = st.multiselect(
|
186 |
-
"Specify the runs you want to see",
|
187 |
-
st.session_state.history.keys(),
|
188 |
-
format_func=lambda run_id: f"Run {run_id.split('_')[1]}",
|
189 |
-
)
|
190 |
-
|
191 |
if len(st.session_state.history.keys()) > 0:
|
|
|
|
|
|
|
|
|
|
|
192 |
if options:
|
193 |
render_output(
|
194 |
st,
|
|
|
17 |
return KeyphraseGenerationPipeline(chosen_model, truncation=True)
|
18 |
|
19 |
|
20 |
+
def generate_run_id():
|
21 |
+
return f"run_{re.sub('keyphrase-extraction-|keyphrase-generation-', '', st.session_state.chosen_model)}_{st.session_state.current_run_id}"
|
22 |
+
|
23 |
+
|
24 |
def extract_keyphrases():
|
25 |
st.session_state.keyphrases = pipe(st.session_state.input_text)
|
26 |
+
st.session_state.history[generate_run_id()] = {
|
27 |
"run_id": st.session_state.current_run_id,
|
28 |
"model": st.session_state.chosen_model,
|
29 |
"text": st.session_state.input_text,
|
|
|
35 |
def get_annotated_text(text, keyphrases, color="#d294ff"):
|
36 |
for keyphrase in keyphrases:
|
37 |
text = re.sub(
|
38 |
+
rf"({keyphrase})([^A-Za-z0-9])",
|
39 |
rf"$K:{keyphrases.index(keyphrase)}\2",
|
40 |
text,
|
41 |
flags=re.I,
|
|
|
87 |
unsafe_allow_html=True,
|
88 |
)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
result = get_annotated_text(run.get("text"), list(run.get("keyphrases")))
|
91 |
layout.markdown(
|
92 |
f"""
|
|
|
95 |
""",
|
96 |
unsafe_allow_html=True,
|
97 |
)
|
98 |
+
if "generation" in run.get("model"):
|
99 |
+
abstractive_keyphrases = [
|
100 |
+
(keyphrase, "KEY", "#FFA500")
|
101 |
+
for keyphrase in run.get("keyphrases")
|
102 |
+
if keyphrase.lower() not in run.get("text").lower()
|
103 |
+
]
|
104 |
+
for i in range(len(abstractive_keyphrases)):
|
105 |
+
if i % 2 == 0:
|
106 |
+
abstractive_keyphrases.insert(i + 1, " ")
|
107 |
+
|
108 |
+
layout.markdown(
|
109 |
+
f"<p style=\"margin: 1rem 0 0 0\"><strong>Absent keyphrases:</strong> {get_annotated_html(*abstractive_keyphrases) if abstractive_keyphrases else 'None' }</p>",
|
110 |
+
unsafe_allow_html=True,
|
111 |
+
)
|
112 |
layout.markdown("---")
|
113 |
|
114 |
|
|
|
132 |
st.header("π Keyphrase extraction/generation with Transformers")
|
133 |
|
134 |
description = """
|
135 |
+
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document.
|
136 |
+
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading
|
137 |
+
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail
|
138 |
+
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents,
|
139 |
+
this process can take a lot of time β³.
|
140 |
+
|
141 |
+
Here is where Artificial Intelligence π€ comes in. Currently, classical machine learning methods, that use statistical
|
142 |
+
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture
|
143 |
+
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency,
|
144 |
+
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies
|
145 |
+
and context of words in a text.
|
146 |
+
|
147 |
+
This space gives you the ability to extract keyphrases out of a custom text with transformer-based extraction and generation models.
|
148 |
+
Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document
|
149 |
+
is classified as being part of a keyphrase or not.
|
150 |
+
The labels used during fine-tuning are B (Beginning of a keyphrase), I (Inside a keyphrases),
|
151 |
and O (Outside a keyhprase).
|
152 |
|
153 |
+
While keyphrase extraction use encoder-only models to interpret the document. Keyphrase generation models
|
154 |
+
work a bit differently. Here you use an encoder-decoder model (e.g. BART, T5) to generate keyphrases from a given text.
|
155 |
+
These models also have the ability to generate keyphrases, which are not present in the text π€―.
|
156 |
+
This can be really interesting in certain applications. For example if you want to make a news article more discoverable.
|
157 |
|
158 |
+
Try it out yourself! π
|
159 |
"""
|
160 |
|
161 |
st.write(description)
|
162 |
|
163 |
with st.form("keyphrase-extraction-form"):
|
164 |
+
st.session_state.chosen_model = st.selectbox(
|
|
|
|
|
165 |
"Choose your model:", st.session_state.config.get("models")
|
166 |
)
|
167 |
|
|
|
181 |
)
|
182 |
|
183 |
with st.spinner("Extracting keyphrases..."):
|
184 |
+
_, button_container = st.columns([7, 1])
|
185 |
+
pressed = button_container.form_submit_button("Extract")
|
186 |
|
187 |
if pressed and st.session_state.input_text != "":
|
188 |
with st.spinner("Loading pipeline..."):
|
|
|
194 |
elif st.session_state.input_text == "":
|
195 |
st.error("The text input is empty π Please provide a text in the input field.")
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
if len(st.session_state.history.keys()) > 0:
|
198 |
+
options = st.multiselect(
|
199 |
+
"Specify the runs you want to see",
|
200 |
+
st.session_state.history.keys(),
|
201 |
+
format_func=lambda run_id: f"Run {run_id.split('_')[-1]}: {run_id.split('_')[1]}",
|
202 |
+
)
|
203 |
if options:
|
204 |
render_output(
|
205 |
st,
|