mnauf commited on
Commit
79dbd5a
Β·
1 Parent(s): 9570612

first commit

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
.dockerignore ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2
+ .git
3
+ .cache
4
+ .idea
5
+ runs
6
+ output
7
+ coco
8
+ storage.googleapis.com
9
+
10
+ data/samples/*
11
+ **/results*.csv
12
+ *.jpg
13
+
14
+ # Neural Network weights -----------------------------------------------------------------------------------------------
15
+ **/*.pt
16
+ **/*.pth
17
+ **/*.onnx
18
+ **/*.engine
19
+ **/*.mlmodel
20
+ **/*.torchscript
21
+ **/*.torchscript.pt
22
+ **/*.tflite
23
+ **/*.h5
24
+ **/*.pb
25
+ *_saved_model/
26
+ *_web_model/
27
+ *_openvino_model/
28
+
29
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
30
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
31
+
32
+
33
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
34
+ # Byte-compiled / optimized / DLL files
35
+ __pycache__/
36
+ *.py[cod]
37
+ *$py.class
38
+
39
+ # C extensions
40
+ *.so
41
+
42
+ # Distribution / packaging
43
+ .Python
44
+ env/
45
+ build/
46
+ develop-eggs/
47
+ dist/
48
+ downloads/
49
+ eggs/
50
+ .eggs/
51
+ lib/
52
+ lib64/
53
+ parts/
54
+ sdist/
55
+ var/
56
+ wheels/
57
+ *.egg-info/
58
+ wandb/
59
+ .installed.cfg
60
+ *.egg
61
+
62
+ # PyInstaller
63
+ # Usually these files are written by a python script from a template
64
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
65
+ *.manifest
66
+ *.spec
67
+
68
+ # Installer logs
69
+ pip-log.txt
70
+ pip-delete-this-directory.txt
71
+
72
+ # Unit test / coverage reports
73
+ htmlcov/
74
+ .tox/
75
+ .coverage
76
+ .coverage.*
77
+ .cache
78
+ nosetests.xml
79
+ coverage.xml
80
+ *.cover
81
+ .hypothesis/
82
+
83
+ # Translations
84
+ *.mo
85
+ *.pot
86
+
87
+ # Django stuff:
88
+ *.log
89
+ local_settings.py
90
+
91
+ # Flask stuff:
92
+ instance/
93
+ .webassets-cache
94
+
95
+ # Scrapy stuff:
96
+ .scrapy
97
+
98
+ # Sphinx documentation
99
+ docs/_build/
100
+
101
+ # PyBuilder
102
+ target/
103
+
104
+ # Jupyter Notebook
105
+ .ipynb_checkpoints
106
+
107
+ # pyenv
108
+ .python-version
109
+
110
+ # celery beat schedule file
111
+ celerybeat-schedule
112
+
113
+ # SageMath parsed files
114
+ *.sage.py
115
+
116
+ # dotenv
117
+ .env
118
+
119
+ # virtualenv
120
+ .venv*
121
+ venv*/
122
+ ENV*/
123
+
124
+ # Spyder project settings
125
+ .spyderproject
126
+ .spyproject
127
+
128
+ # Rope project settings
129
+ .ropeproject
130
+
131
+ # mkdocs documentation
132
+ /site
133
+
134
+ # mypy
135
+ .mypy_cache/
136
+
137
+
138
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
139
+
140
+ # General
141
+ .DS_Store
142
+ .AppleDouble
143
+ .LSOverride
144
+
145
+ # Icon must end with two \r
146
+ Icon
147
+ Icon?
148
+
149
+ # Thumbnails
150
+ ._*
151
+
152
+ # Files that might appear in the root of a volume
153
+ .DocumentRevisions-V100
154
+ .fseventsd
155
+ .Spotlight-V100
156
+ .TemporaryItems
157
+ .Trashes
158
+ .VolumeIcon.icns
159
+ .com.apple.timemachine.donotpresent
160
+
161
+ # Directories potentially created on remote AFP share
162
+ .AppleDB
163
+ .AppleDesktop
164
+ Network Trash Folder
165
+ Temporary Items
166
+ .apdisk
167
+
168
+
169
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
170
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
171
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
172
+
173
+ # User-specific stuff:
174
+ .idea/*
175
+ .idea/**/workspace.xml
176
+ .idea/**/tasks.xml
177
+ .idea/dictionaries
178
+ .html # Bokeh Plots
179
+ .pg # TensorFlow Frozen Graphs
180
+ .avi # videos
181
+
182
+ # Sensitive or high-churn files:
183
+ .idea/**/dataSources/
184
+ .idea/**/dataSources.ids
185
+ .idea/**/dataSources.local.xml
186
+ .idea/**/sqlDataSources.xml
187
+ .idea/**/dynamic.xml
188
+ .idea/**/uiDesigner.xml
189
+
190
+ # Gradle:
191
+ .idea/**/gradle.xml
192
+ .idea/**/libraries
193
+
194
+ # CMake
195
+ cmake-build-debug/
196
+ cmake-build-release/
197
+
198
+ # Mongo Explorer plugin:
199
+ .idea/**/mongoSettings.xml
200
+
201
+ ## File-based project format:
202
+ *.iws
203
+
204
+ ## Plugin-specific files:
205
+
206
+ # IntelliJ
207
+ out/
208
+
209
+ # mpeltonen/sbt-idea plugin
210
+ .idea_modules/
211
+
212
+ # JIRA plugin
213
+ atlassian-ide-plugin.xml
214
+
215
+ # Cursive Clojure plugin
216
+ .idea/replstate.xml
217
+
218
+ # Crashlytics plugin (for Android Studio and IntelliJ)
219
+ com_crashlytics_export_strings.xml
220
+ crashlytics.properties
221
+ crashlytics-build.properties
222
+ fabric.properties
.gitignore ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
2
+ *.jpg
3
+ *.jpeg
4
+ *.png
5
+ *.bmp
6
+ *.tif
7
+ *.tiff
8
+ *.heic
9
+ *.JPG
10
+ *.JPEG
11
+ *.PNG
12
+ *.BMP
13
+ *.TIF
14
+ *.TIFF
15
+ *.HEIC
16
+ *.mp4
17
+ *.mov
18
+ *.MOV
19
+ *.avi
20
+ *.data
21
+ *.json
22
+ *.cfg
23
+ !setup.cfg
24
+ !cfg/yolov3*.cfg
25
+
26
+ storage.googleapis.com
27
+ runs/*
28
+ data/*
29
+ data/images/*
30
+ !data/*.yaml
31
+ !data/hyps
32
+ !data/scripts
33
+ !data/images
34
+ !data/images/zidane.jpg
35
+ !data/images/bus.jpg
36
+ !data/*.sh
37
+
38
+ results*.csv
39
+
40
+ # Datasets -------------------------------------------------------------------------------------------------------------
41
+ coco/
42
+ coco128/
43
+ VOC/
44
+
45
+ # MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
46
+ *.m~
47
+ *.mat
48
+ !targets*.mat
49
+
50
+ # Neural Network weights -----------------------------------------------------------------------------------------------
51
+ *.weights
52
+ *.pt
53
+ *.pb
54
+ *.onnx
55
+ *.engine
56
+ *.mlmodel
57
+ *.torchscript
58
+ *.tflite
59
+ *.h5
60
+ *_saved_model/
61
+ *_web_model/
62
+ *_openvino_model/
63
+ darknet53.conv.74
64
+ yolov3-tiny.conv.15
65
+
66
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
67
+ # Byte-compiled / optimized / DLL files
68
+ __pycache__/
69
+ *.py[cod]
70
+ *$py.class
71
+
72
+ # C extensions
73
+ *.so
74
+
75
+ # Distribution / packaging
76
+ .Python
77
+ env/
78
+ build/
79
+ develop-eggs/
80
+ dist/
81
+ downloads/
82
+ eggs/
83
+ .eggs/
84
+ lib/
85
+ lib64/
86
+ parts/
87
+ sdist/
88
+ var/
89
+ wheels/
90
+ *.egg-info/
91
+ /wandb/
92
+ .installed.cfg
93
+ *.egg
94
+
95
+
96
+ # PyInstaller
97
+ # Usually these files are written by a python script from a template
98
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
99
+ *.manifest
100
+ *.spec
101
+
102
+ # Installer logs
103
+ pip-log.txt
104
+ pip-delete-this-directory.txt
105
+
106
+ # Unit test / coverage reports
107
+ htmlcov/
108
+ .tox/
109
+ .coverage
110
+ .coverage.*
111
+ .cache
112
+ nosetests.xml
113
+ coverage.xml
114
+ *.cover
115
+ .hypothesis/
116
+
117
+ # Translations
118
+ *.mo
119
+ *.pot
120
+
121
+ # Django stuff:
122
+ *.log
123
+ local_settings.py
124
+
125
+ # Flask stuff:
126
+ instance/
127
+ .webassets-cache
128
+
129
+ # Scrapy stuff:
130
+ .scrapy
131
+
132
+ # Sphinx documentation
133
+ docs/_build/
134
+
135
+ # PyBuilder
136
+ target/
137
+
138
+ # Jupyter Notebook
139
+ .ipynb_checkpoints
140
+
141
+ # pyenv
142
+ .python-version
143
+
144
+ # celery beat schedule file
145
+ celerybeat-schedule
146
+
147
+ # SageMath parsed files
148
+ *.sage.py
149
+
150
+ # dotenv
151
+ .env
152
+
153
+ # virtualenv
154
+ .venv*
155
+ venv*/
156
+ ENV*/
157
+
158
+ # Spyder project settings
159
+ .spyderproject
160
+ .spyproject
161
+
162
+ # Rope project settings
163
+ .ropeproject
164
+
165
+ # mkdocs documentation
166
+ /site
167
+
168
+ # mypy
169
+ .mypy_cache/
170
+
171
+
172
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
173
+
174
+ # General
175
+ .DS_Store
176
+ .AppleDouble
177
+ .LSOverride
178
+
179
+ # Icon must end with two \r
180
+ Icon
181
+ Icon?
182
+
183
+ # Thumbnails
184
+ ._*
185
+
186
+ # Files that might appear in the root of a volume
187
+ .DocumentRevisions-V100
188
+ .fseventsd
189
+ .Spotlight-V100
190
+ .TemporaryItems
191
+ .Trashes
192
+ .VolumeIcon.icns
193
+ .com.apple.timemachine.donotpresent
194
+
195
+ # Directories potentially created on remote AFP share
196
+ .AppleDB
197
+ .AppleDesktop
198
+ Network Trash Folder
199
+ Temporary Items
200
+ .apdisk
201
+
202
+
203
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
204
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
205
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
206
+
207
+ # User-specific stuff:
208
+ .idea/*
209
+ .idea/**/workspace.xml
210
+ .idea/**/tasks.xml
211
+ .idea/dictionaries
212
+ .html # Bokeh Plots
213
+ .pg # TensorFlow Frozen Graphs
214
+ .avi # videos
215
+
216
+ # Sensitive or high-churn files:
217
+ .idea/**/dataSources/
218
+ .idea/**/dataSources.ids
219
+ .idea/**/dataSources.local.xml
220
+ .idea/**/sqlDataSources.xml
221
+ .idea/**/dynamic.xml
222
+ .idea/**/uiDesigner.xml
223
+
224
+ # Gradle:
225
+ .idea/**/gradle.xml
226
+ .idea/**/libraries
227
+
228
+ # CMake
229
+ cmake-build-debug/
230
+ cmake-build-release/
231
+
232
+ # Mongo Explorer plugin:
233
+ .idea/**/mongoSettings.xml
234
+
235
+ ## File-based project format:
236
+ *.iws
237
+
238
+ ## Plugin-specific files:
239
+
240
+ # IntelliJ
241
+ out/
242
+
243
+ # mpeltonen/sbt-idea plugin
244
+ .idea_modules/
245
+
246
+ # JIRA plugin
247
+ atlassian-ide-plugin.xml
248
+
249
+ # Cursive Clojure plugin
250
+ .idea/replstate.xml
251
+
252
+ # Crashlytics plugin (for Android Studio and IntelliJ)
253
+ com_crashlytics_export_strings.xml
254
+ crashlytics.properties
255
+ crashlytics-build.properties
256
+ fabric.properties
.pre-commit-config.yaml ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Define hooks for code formations
2
+ # Will be applied on any updated commit files if a user has installed and linked commit hook
3
+
4
+ default_language_version:
5
+ python: python3.8
6
+
7
+ # Define bot property if installed via https://github.com/marketplace/pre-commit-ci
8
+ ci:
9
+ autofix_prs: true
10
+ autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
11
+ autoupdate_schedule: monthly
12
+ # submodules: true
13
+
14
+ repos:
15
+ - repo: https://github.com/pre-commit/pre-commit-hooks
16
+ rev: v4.3.0
17
+ hooks:
18
+ # - id: end-of-file-fixer
19
+ - id: trailing-whitespace
20
+ - id: check-case-conflict
21
+ - id: check-yaml
22
+ - id: check-toml
23
+ - id: pretty-format-json
24
+ - id: check-docstring-first
25
+
26
+ - repo: https://github.com/asottile/pyupgrade
27
+ rev: v2.38.2
28
+ hooks:
29
+ - id: pyupgrade
30
+ name: Upgrade code
31
+ args: [ --py37-plus ]
32
+
33
+ - repo: https://github.com/PyCQA/isort
34
+ rev: 5.10.1
35
+ hooks:
36
+ - id: isort
37
+ name: Sort imports
38
+
39
+ - repo: https://github.com/pre-commit/mirrors-yapf
40
+ rev: v0.32.0
41
+ hooks:
42
+ - id: yapf
43
+ name: YAPF formatting
44
+
45
+ - repo: https://github.com/executablebooks/mdformat
46
+ rev: 0.7.16
47
+ hooks:
48
+ - id: mdformat
49
+ name: MD formatting
50
+ additional_dependencies:
51
+ - mdformat-gfm
52
+ - mdformat-black
53
+ exclude: "README.md|README_cn.md"
54
+
55
+ - repo: https://github.com/asottile/yesqa
56
+ rev: v1.4.0
57
+ hooks:
58
+ - id: yesqa
59
+
60
+ - repo: https://github.com/PyCQA/flake8
61
+ rev: 5.0.4
62
+ hooks:
63
+ - id: flake8
64
+ name: PEP8
CONTRIBUTING.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Contributing to YOLOv5 πŸš€
2
+
3
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4
+
5
+ - Reporting a bug
6
+ - Discussing the current state of the code
7
+ - Submitting a fix
8
+ - Proposing a new feature
9
+ - Becoming a maintainer
10
+
11
+ YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
12
+ helping push the frontiers of what's possible in AI πŸ˜ƒ!
13
+
14
+ ## Submitting a Pull Request (PR) πŸ› οΈ
15
+
16
+ Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
17
+
18
+ ### 1. Select File to Update
19
+
20
+ Select `requirements.txt` to update by clicking on it in GitHub.
21
+
22
+ <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
23
+
24
+ ### 2. Click 'Edit this file'
25
+
26
+ Button is in top-right corner.
27
+
28
+ <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
29
+
30
+ ### 3. Make Changes
31
+
32
+ Change `matplotlib` version from `3.2.2` to `3.3`.
33
+
34
+ <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
35
+
36
+ ### 4. Preview Changes and Submit PR
37
+
38
+ Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
39
+ for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
40
+ changes** button. All done, your PR is now submitted to YOLOv5 for review and approval πŸ˜ƒ!
41
+
42
+ <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
43
+
44
+ ### PR recommendations
45
+
46
+ To allow your work to be integrated as seamlessly as possible, we advise you to:
47
+
48
+ - βœ… Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update
49
+ your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
50
+
51
+ <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
52
+
53
+ - βœ… Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
54
+
55
+ <p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
56
+
57
+ - βœ… Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
58
+ but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ β€” Bruce Lee
59
+
60
+ ## Submitting a Bug Report πŸ›
61
+
62
+ If you spot a problem with YOLOv5 please submit a Bug Report!
63
+
64
+ For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
65
+ short guidelines below to help users provide what we need in order to get started.
66
+
67
+ When asking a question, people will be better able to provide help if you provide **code** that they can easily
68
+ understand and use to **reproduce** the problem. This is referred to by community members as creating
69
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
70
+ the problem should be:
71
+
72
+ - βœ… **Minimal** – Use as little code as possible that still produces the same problem
73
+ - βœ… **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
74
+ - βœ… **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
75
+
76
+ In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
77
+ should be:
78
+
79
+ - βœ… **Current** – Verify that your code is up-to-date with current
80
+ GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
81
+ copy to ensure your problem has not already been resolved by previous commits.
82
+ - βœ… **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
83
+ repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
84
+
85
+ If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the πŸ›
86
+ **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
87
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
88
+ understand and diagnose your problem.
89
+
90
+ ## License
91
+
92
+ By contributing, you agree that your contributions will be licensed under
93
+ the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <http://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Detect Bees
3
- emoji: πŸ“Š
4
- colorFrom: green
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 3.34.0
8
- app_file: app.py
9
- pinned: false
10
- license: openrail
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from sample_solution import main as detect_bees
3
+
4
+ badges = """
5
+ <div style="display: flex">
6
+ <span style="margin-right: 5px">
7
+ <a href="https://www.linkedin.com/in/mnauf/" target="_blank"> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/01/LinkedIn_Logo.svg/2560px-LinkedIn_Logo.svg.png" alt="Linkedin" width=100 height=auto> </a>
8
+ </span>
9
+ <span style="margin-right: 5px">
10
+ <a href="https://github.com/mnauf/Bees-ML-Challenge" target="_blank"> <img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="Github"> </a>
11
+ </span>
12
+ <span style="margin-right: 5px">
13
+ <a href="https://twitter.com/MNaufil" target="_blank"> <img src="https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white" alt="Twitter"> </a>
14
+ </span>
15
+ </div>
16
+ """
17
+
18
+ description="""Detect bees in the image"""
19
+ with gr.Blocks() as block:
20
+ # gr.Markdown("""![Imgur](https://i.imgur.com/iPZlUa8.png)""")
21
+ gr.HTML("<img src=https://i.imgur.com/mG2WSlK.png width=auto height=200>")
22
+ gr.Markdown(badges)
23
+ gr.Markdown(description)
24
+ with gr.Row():
25
+ file_input = gr.Image()
26
+ file_output = gr.Image()
27
+
28
+ btn = gr.Button(value="Count the number of Bees")
29
+ btn.click(detect_bees, inputs=[file_input], outputs=[file_output], queue=True)
30
+
31
+ block.queue(concurrency_count=5).launch(server_name="localhost", share=True)
32
+ # block.queue().launch()
benchmarks.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 benchmarks on all supported export formats
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+
19
+ Requirements:
20
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
+ $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
23
+
24
+ Usage:
25
+ $ python utils/benchmarks.py --weights yolov5s.pt --img 640
26
+ """
27
+
28
+ import argparse
29
+ import platform
30
+ import sys
31
+ import time
32
+ from pathlib import Path
33
+
34
+ import pandas as pd
35
+
36
+ FILE = Path(__file__).resolve()
37
+ ROOT = FILE.parents[0] # YOLOv5 root directory
38
+ if str(ROOT) not in sys.path:
39
+ sys.path.append(str(ROOT)) # add ROOT to PATH
40
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
41
+
42
+ import export
43
+ from models.experimental import attempt_load
44
+ from models.yolo import SegmentationModel
45
+ from segment.val import run as val_seg
46
+ from utils import notebook_init
47
+ from utils.general import LOGGER, check_yaml, file_size, print_args
48
+ from utils.torch_utils import select_device
49
+ from val import run as val_det
50
+
51
+
52
+ def run(
53
+ weights=ROOT / 'yolov5s.pt', # weights path
54
+ imgsz=640, # inference size (pixels)
55
+ batch_size=1, # batch size
56
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
57
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
58
+ half=False, # use FP16 half-precision inference
59
+ test=False, # test exports only
60
+ pt_only=False, # test PyTorch only
61
+ hard_fail=False, # throw error on benchmark failure
62
+ ):
63
+ y, t = [], time.time()
64
+ device = select_device(device)
65
+ model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
66
+ for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
67
+ try:
68
+ assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
69
+ assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
70
+ if 'cpu' in device.type:
71
+ assert cpu, 'inference not supported on CPU'
72
+ if 'cuda' in device.type:
73
+ assert gpu, 'inference not supported on GPU'
74
+
75
+ # Export
76
+ if f == '-':
77
+ w = weights # PyTorch format
78
+ else:
79
+ w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
80
+ assert suffix in str(w), 'export failed'
81
+
82
+ # Validate
83
+ if model_type == SegmentationModel:
84
+ result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
85
+ metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
86
+ else: # DetectionModel:
87
+ result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
88
+ metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
89
+ speed = result[2][1] # times (preprocess, inference, postprocess)
90
+ y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
91
+ except Exception as e:
92
+ if hard_fail:
93
+ assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
94
+ LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
95
+ y.append([name, None, None, None]) # mAP, t_inference
96
+ if pt_only and i == 0:
97
+ break # break after PyTorch
98
+
99
+ # Print results
100
+ LOGGER.info('\n')
101
+ parse_opt()
102
+ notebook_init() # print system info
103
+ c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
104
+ py = pd.DataFrame(y, columns=c)
105
+ LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
106
+ LOGGER.info(str(py if map else py.iloc[:, :2]))
107
+ if hard_fail and isinstance(hard_fail, str):
108
+ metrics = py['mAP50-95'].array # values to compare to floor
109
+ floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
110
+ assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
111
+ return py
112
+
113
+
114
+ def test(
115
+ weights=ROOT / 'yolov5s.pt', # weights path
116
+ imgsz=640, # inference size (pixels)
117
+ batch_size=1, # batch size
118
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
119
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
120
+ half=False, # use FP16 half-precision inference
121
+ test=False, # test exports only
122
+ pt_only=False, # test PyTorch only
123
+ hard_fail=False, # throw error on benchmark failure
124
+ ):
125
+ y, t = [], time.time()
126
+ device = select_device(device)
127
+ for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
128
+ try:
129
+ w = weights if f == '-' else \
130
+ export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
131
+ assert suffix in str(w), 'export failed'
132
+ y.append([name, True])
133
+ except Exception:
134
+ y.append([name, False]) # mAP, t_inference
135
+
136
+ # Print results
137
+ LOGGER.info('\n')
138
+ parse_opt()
139
+ notebook_init() # print system info
140
+ py = pd.DataFrame(y, columns=['Format', 'Export'])
141
+ LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
142
+ LOGGER.info(str(py))
143
+ return py
144
+
145
+
146
+ def parse_opt():
147
+ parser = argparse.ArgumentParser()
148
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
149
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
150
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
151
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
152
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
153
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
154
+ parser.add_argument('--test', action='store_true', help='test exports only')
155
+ parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
156
+ parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
157
+ opt = parser.parse_args()
158
+ opt.data = check_yaml(opt.data) # check YAML
159
+ print_args(vars(opt))
160
+ return opt
161
+
162
+
163
+ def main(opt):
164
+ test(**vars(opt)) if opt.test else run(**vars(opt))
165
+
166
+
167
+ if __name__ == "__main__":
168
+ opt = parse_opt()
169
+ main(opt)
classify/predict.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ path/ # directory
10
+ 'path/*.jpg' # glob
11
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
12
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
13
+
14
+ Usage - formats:
15
+ $ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
16
+ yolov5s-cls.torchscript # TorchScript
17
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
18
+ yolov5s-cls_openvino_model # OpenVINO
19
+ yolov5s-cls.engine # TensorRT
20
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
21
+ yolov5s-cls_saved_model # TensorFlow SavedModel
22
+ yolov5s-cls.pb # TensorFlow GraphDef
23
+ yolov5s-cls.tflite # TensorFlow Lite
24
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
25
+ yolov5s-cls_paddle_model # PaddlePaddle
26
+ """
27
+
28
+ import argparse
29
+ import os
30
+ import platform
31
+ import sys
32
+ from pathlib import Path
33
+
34
+ import torch
35
+ import torch.nn.functional as F
36
+
37
+ FILE = Path(__file__).resolve()
38
+ ROOT = FILE.parents[1] # YOLOv5 root directory
39
+ if str(ROOT) not in sys.path:
40
+ sys.path.append(str(ROOT)) # add ROOT to PATH
41
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
42
+
43
+ from models.common import DetectMultiBackend
44
+ from utils.augmentations import classify_transforms
45
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
46
+ from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
47
+ increment_path, print_args, strip_optimizer)
48
+ from utils.plots import Annotator
49
+ from utils.torch_utils import select_device, smart_inference_mode
50
+
51
+
52
+ @smart_inference_mode()
53
+ def run(
54
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
55
+ source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
56
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
57
+ imgsz=(224, 224), # inference size (height, width)
58
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
59
+ view_img=False, # show results
60
+ save_txt=False, # save results to *.txt
61
+ nosave=False, # do not save images/videos
62
+ augment=False, # augmented inference
63
+ visualize=False, # visualize features
64
+ update=False, # update all models
65
+ project=ROOT / 'runs/predict-cls', # save results to project/name
66
+ name='exp', # save results to project/name
67
+ exist_ok=False, # existing project/name ok, do not increment
68
+ half=False, # use FP16 half-precision inference
69
+ dnn=False, # use OpenCV DNN for ONNX inference
70
+ vid_stride=1, # video frame-rate stride
71
+ ):
72
+ source = str(source)
73
+ save_img = not nosave and not source.endswith('.txt') # save inference images
74
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
75
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
76
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
77
+ screenshot = source.lower().startswith('screen')
78
+ if is_url and is_file:
79
+ source = check_file(source) # download
80
+
81
+ # Directories
82
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
83
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
84
+
85
+ # Load model
86
+ device = select_device(device)
87
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
88
+ stride, names, pt = model.stride, model.names, model.pt
89
+ imgsz = check_img_size(imgsz, s=stride) # check image size
90
+
91
+ # Dataloader
92
+ bs = 1 # batch_size
93
+ if webcam:
94
+ view_img = check_imshow(warn=True)
95
+ dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
96
+ bs = len(dataset)
97
+ elif screenshot:
98
+ dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
99
+ else:
100
+ dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
101
+ vid_path, vid_writer = [None] * bs, [None] * bs
102
+
103
+ # Run inference
104
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
105
+ seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
106
+ for path, im, im0s, vid_cap, s in dataset:
107
+ with dt[0]:
108
+ im = torch.Tensor(im).to(model.device)
109
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
110
+ if len(im.shape) == 3:
111
+ im = im[None] # expand for batch dim
112
+
113
+ # Inference
114
+ with dt[1]:
115
+ results = model(im)
116
+
117
+ # Post-process
118
+ with dt[2]:
119
+ pred = F.softmax(results, dim=1) # probabilities
120
+
121
+ # Process predictions
122
+ for i, prob in enumerate(pred): # per image
123
+ seen += 1
124
+ if webcam: # batch_size >= 1
125
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
126
+ s += f'{i}: '
127
+ else:
128
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
129
+
130
+ p = Path(p) # to Path
131
+ save_path = str(save_dir / p.name) # im.jpg
132
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
133
+
134
+ s += '%gx%g ' % im.shape[2:] # print string
135
+ annotator = Annotator(im0, example=str(names), pil=True)
136
+
137
+ # Print results
138
+ top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
139
+ s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
140
+
141
+ # Write results
142
+ text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
143
+ if save_img or view_img: # Add bbox to image
144
+ annotator.text((32, 32), text, txt_color=(255, 255, 255))
145
+ if save_txt: # Write to file
146
+ with open(f'{txt_path}.txt', 'a') as f:
147
+ f.write(text + '\n')
148
+
149
+ # Stream results
150
+ im0 = annotator.result()
151
+ if view_img:
152
+ if platform.system() == 'Linux' and p not in windows:
153
+ windows.append(p)
154
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
155
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
156
+ cv2.imshow(str(p), im0)
157
+ cv2.waitKey(1) # 1 millisecond
158
+
159
+ # Save results (image with detections)
160
+ if save_img:
161
+ if dataset.mode == 'image':
162
+ cv2.imwrite(save_path, im0)
163
+ else: # 'video' or 'stream'
164
+ if vid_path[i] != save_path: # new video
165
+ vid_path[i] = save_path
166
+ if isinstance(vid_writer[i], cv2.VideoWriter):
167
+ vid_writer[i].release() # release previous video writer
168
+ if vid_cap: # video
169
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
170
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
171
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
172
+ else: # stream
173
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
174
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
175
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
176
+ vid_writer[i].write(im0)
177
+
178
+ # Print time (inference-only)
179
+ LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
180
+
181
+ # Print results
182
+ t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
183
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
184
+ if save_txt or save_img:
185
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
186
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
187
+ if update:
188
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
189
+
190
+
191
+ def parse_opt():
192
+ parser = argparse.ArgumentParser()
193
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
194
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
195
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
196
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
197
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
198
+ parser.add_argument('--view-img', action='store_true', help='show results')
199
+ parser.add_argument('--save-txt', action='store_false', help='save results to *.txt')
200
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
201
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
202
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
203
+ parser.add_argument('--update', action='store_true', help='update all models')
204
+ parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
205
+ parser.add_argument('--name', default='exp', help='save results to project/name')
206
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
207
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
208
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
209
+ parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
210
+ opt = parser.parse_args()
211
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
212
+ print_args(vars(opt))
213
+ return opt
214
+
215
+
216
+ def main(opt):
217
+ check_requirements(exclude=('tensorboard', 'thop'))
218
+ run(**vars(opt))
219
+
220
+
221
+ if __name__ == "__main__":
222
+ opt = parse_opt()
223
+ main(opt)
classify/train.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Train a YOLOv5 classifier model on a classification dataset
4
+
5
+ Usage - Single-GPU training:
6
+ $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
7
+
8
+ Usage - Multi-GPU DDP training:
9
+ $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
10
+
11
+ Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
12
+ YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
13
+ Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
14
+ """
15
+
16
+ import argparse
17
+ import os
18
+ import subprocess
19
+ import sys
20
+ import time
21
+ from copy import deepcopy
22
+ from datetime import datetime
23
+ from pathlib import Path
24
+
25
+ import torch
26
+ import torch.distributed as dist
27
+ import torch.hub as hub
28
+ import torch.optim.lr_scheduler as lr_scheduler
29
+ import torchvision
30
+ from torch.cuda import amp
31
+ from tqdm import tqdm
32
+
33
+ FILE = Path(__file__).resolve()
34
+ ROOT = FILE.parents[1] # YOLOv5 root directory
35
+ if str(ROOT) not in sys.path:
36
+ sys.path.append(str(ROOT)) # add ROOT to PATH
37
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
+
39
+ from classify import val as validate
40
+ from models.experimental import attempt_load
41
+ from models.yolo import ClassificationModel, DetectionModel
42
+ from utils.dataloaders import create_classification_dataloader
43
+ from utils.general import (DATASETS_DIR, LOGGER, WorkingDirectory, check_git_status, check_requirements, colorstr,
44
+ download, increment_path, init_seeds, print_args, yaml_save)
45
+ from utils.loggers import GenericLogger
46
+ from utils.plots import imshow_cls
47
+ from utils.torch_utils import (ModelEMA, model_info, reshape_classifier_output, select_device, smart_DDP,
48
+ smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
49
+
50
+ LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
51
+ RANK = int(os.getenv('RANK', -1))
52
+ WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
53
+
54
+
55
+ def train(opt, device):
56
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
57
+ save_dir, data, bs, epochs, nw, imgsz, pretrained = \
58
+ opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
59
+ opt.imgsz, str(opt.pretrained).lower() == 'true'
60
+ cuda = device.type != 'cpu'
61
+
62
+ # Directories
63
+ wdir = save_dir / 'weights'
64
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
65
+ last, best = wdir / 'last.pt', wdir / 'best.pt'
66
+
67
+ # Save run settings
68
+ yaml_save(save_dir / 'opt.yaml', vars(opt))
69
+
70
+ # Logger
71
+ logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
72
+
73
+ # Download Dataset
74
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
75
+ data_dir = data if data.is_dir() else (DATASETS_DIR / data)
76
+ if not data_dir.is_dir():
77
+ LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
78
+ t = time.time()
79
+ if str(data) == 'imagenet':
80
+ subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
81
+ else:
82
+ url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
83
+ download(url, dir=data_dir.parent)
84
+ s = f"Dataset download success βœ… ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
85
+ LOGGER.info(s)
86
+
87
+ # Dataloaders
88
+ nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
89
+ trainloader = create_classification_dataloader(path=data_dir / 'train',
90
+ imgsz=imgsz,
91
+ batch_size=bs // WORLD_SIZE,
92
+ augment=True,
93
+ cache=opt.cache,
94
+ rank=LOCAL_RANK,
95
+ workers=nw)
96
+
97
+ test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
98
+ if RANK in {-1, 0}:
99
+ testloader = create_classification_dataloader(path=test_dir,
100
+ imgsz=imgsz,
101
+ batch_size=bs // WORLD_SIZE * 2,
102
+ augment=False,
103
+ cache=opt.cache,
104
+ rank=-1,
105
+ workers=nw)
106
+
107
+ # Model
108
+ with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
109
+ if Path(opt.model).is_file() or opt.model.endswith('.pt'):
110
+ model = attempt_load(opt.model, device='cpu', fuse=False)
111
+ elif opt.model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
112
+ model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
113
+ else:
114
+ m = hub.list('ultralytics/yolov5') # + hub.list('pytorch/vision') # models
115
+ raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
116
+ if isinstance(model, DetectionModel):
117
+ LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
118
+ model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10) # convert to classification model
119
+ reshape_classifier_output(model, nc) # update class count
120
+ for m in model.modules():
121
+ if not pretrained and hasattr(m, 'reset_parameters'):
122
+ m.reset_parameters()
123
+ if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
124
+ m.p = opt.dropout # set dropout
125
+ for p in model.parameters():
126
+ p.requires_grad = True # for training
127
+ model = model.to(device)
128
+
129
+ # Info
130
+ if RANK in {-1, 0}:
131
+ model.names = trainloader.dataset.classes # attach class names
132
+ model.transforms = testloader.dataset.torch_transforms # attach inference transforms
133
+ model_info(model)
134
+ if opt.verbose:
135
+ LOGGER.info(model)
136
+ images, labels = next(iter(trainloader))
137
+ file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
138
+ logger.log_images(file, name='Train Examples')
139
+ logger.log_graph(model, imgsz) # log model
140
+
141
+ # Optimizer
142
+ optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
143
+
144
+ # Scheduler
145
+ lrf = 0.01 # final lr (fraction of lr0)
146
+ # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
147
+ lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
148
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
149
+ # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
150
+ # final_div_factor=1 / 25 / lrf)
151
+
152
+ # EMA
153
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
154
+
155
+ # DDP mode
156
+ if cuda and RANK != -1:
157
+ model = smart_DDP(model)
158
+
159
+ # Train
160
+ t0 = time.time()
161
+ criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss function
162
+ best_fitness = 0.0
163
+ scaler = amp.GradScaler(enabled=cuda)
164
+ val = test_dir.stem # 'val' or 'test'
165
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
166
+ f'Using {nw * WORLD_SIZE} dataloader workers\n'
167
+ f"Logging results to {colorstr('bold', save_dir)}\n"
168
+ f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
169
+ f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
170
+ for epoch in range(epochs): # loop over the dataset multiple times
171
+ tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
172
+ model.train()
173
+ if RANK != -1:
174
+ trainloader.sampler.set_epoch(epoch)
175
+ pbar = enumerate(trainloader)
176
+ if RANK in {-1, 0}:
177
+ pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
178
+ for i, (images, labels) in pbar: # progress bar
179
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
180
+
181
+ # Forward
182
+ with amp.autocast(enabled=cuda): # stability issues when enabled
183
+ loss = criterion(model(images), labels)
184
+
185
+ # Backward
186
+ scaler.scale(loss).backward()
187
+
188
+ # Optimize
189
+ scaler.unscale_(optimizer) # unscale gradients
190
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
191
+ scaler.step(optimizer)
192
+ scaler.update()
193
+ optimizer.zero_grad()
194
+ if ema:
195
+ ema.update(model)
196
+
197
+ if RANK in {-1, 0}:
198
+ # Print
199
+ tloss = (tloss * i + loss.item()) / (i + 1) # update mean losses
200
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
201
+ pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
202
+
203
+ # Test
204
+ if i == len(pbar) - 1: # last batch
205
+ top1, top5, vloss = validate.run(model=ema.ema,
206
+ dataloader=testloader,
207
+ criterion=criterion,
208
+ pbar=pbar) # test accuracy, loss
209
+ fitness = top1 # define fitness as top1 accuracy
210
+
211
+ # Scheduler
212
+ scheduler.step()
213
+
214
+ # Log metrics
215
+ if RANK in {-1, 0}:
216
+ # Best fitness
217
+ if fitness > best_fitness:
218
+ best_fitness = fitness
219
+
220
+ # Log
221
+ metrics = {
222
+ "train/loss": tloss,
223
+ f"{val}/loss": vloss,
224
+ "metrics/accuracy_top1": top1,
225
+ "metrics/accuracy_top5": top5,
226
+ "lr/0": optimizer.param_groups[0]['lr']} # learning rate
227
+ logger.log_metrics(metrics, epoch)
228
+
229
+ # Save model
230
+ final_epoch = epoch + 1 == epochs
231
+ if (not opt.nosave) or final_epoch:
232
+ ckpt = {
233
+ 'epoch': epoch,
234
+ 'best_fitness': best_fitness,
235
+ 'model': deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(),
236
+ 'ema': None, # deepcopy(ema.ema).half(),
237
+ 'updates': ema.updates,
238
+ 'optimizer': None, # optimizer.state_dict(),
239
+ 'opt': vars(opt),
240
+ 'date': datetime.now().isoformat()}
241
+
242
+ # Save last, best and delete
243
+ torch.save(ckpt, last)
244
+ if best_fitness == fitness:
245
+ torch.save(ckpt, best)
246
+ del ckpt
247
+
248
+ # Train complete
249
+ if RANK in {-1, 0} and final_epoch:
250
+ LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
251
+ f"\nResults saved to {colorstr('bold', save_dir)}"
252
+ f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
253
+ f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
254
+ f"\nExport: python export.py --weights {best} --include onnx"
255
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
256
+ f"\nVisualize: https://netron.app\n")
257
+
258
+ # Plot examples
259
+ images, labels = (x[:25] for x in next(iter(testloader))) # first 25 images and labels
260
+ pred = torch.max(ema.ema(images.to(device)), 1)[1]
261
+ file = imshow_cls(images, labels, pred, model.names, verbose=False, f=save_dir / 'test_images.jpg')
262
+
263
+ # Log results
264
+ meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
265
+ logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
266
+ logger.log_model(best, epochs, metadata=meta)
267
+
268
+
269
+ def parse_opt(known=False):
270
+ parser = argparse.ArgumentParser()
271
+ parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
272
+ parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
273
+ parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
274
+ parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
275
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
276
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
277
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
278
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
279
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
280
+ parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
281
+ parser.add_argument('--name', default='exp', help='save to project/name')
282
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
283
+ parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
284
+ parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
285
+ parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
286
+ parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
287
+ parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
288
+ parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
289
+ parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
290
+ parser.add_argument('--verbose', action='store_true', help='Verbose mode')
291
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
292
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
293
+ return parser.parse_known_args()[0] if known else parser.parse_args()
294
+
295
+
296
+ def main(opt):
297
+ # Checks
298
+ if RANK in {-1, 0}:
299
+ print_args(vars(opt))
300
+ check_git_status()
301
+ check_requirements()
302
+
303
+ # DDP mode
304
+ device = select_device(opt.device, batch_size=opt.batch_size)
305
+ if LOCAL_RANK != -1:
306
+ assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
307
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
308
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
309
+ torch.cuda.set_device(LOCAL_RANK)
310
+ device = torch.device('cuda', LOCAL_RANK)
311
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
312
+
313
+ # Parameters
314
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
315
+
316
+ # Train
317
+ train(opt, device)
318
+
319
+
320
+ def run(**kwargs):
321
+ # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
322
+ opt = parse_opt(True)
323
+ for k, v in kwargs.items():
324
+ setattr(opt, k, v)
325
+ main(opt)
326
+ return opt
327
+
328
+
329
+ if __name__ == "__main__":
330
+ opt = parse_opt()
331
+ main(opt)
classify/val.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 classification model on a classification dataset
4
+
5
+ Usage:
6
+ $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
7
+ $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
8
+
9
+ Usage - formats:
10
+ $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
11
+ yolov5s-cls.torchscript # TorchScript
12
+ yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
13
+ yolov5s-cls_openvino_model # OpenVINO
14
+ yolov5s-cls.engine # TensorRT
15
+ yolov5s-cls.mlmodel # CoreML (macOS-only)
16
+ yolov5s-cls_saved_model # TensorFlow SavedModel
17
+ yolov5s-cls.pb # TensorFlow GraphDef
18
+ yolov5s-cls.tflite # TensorFlow Lite
19
+ yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
20
+ yolov5s-cls_paddle_model # PaddlePaddle
21
+ """
22
+
23
+ import argparse
24
+ import os
25
+ import sys
26
+ from pathlib import Path
27
+
28
+ import torch
29
+ from tqdm import tqdm
30
+
31
+ FILE = Path(__file__).resolve()
32
+ ROOT = FILE.parents[1] # YOLOv5 root directory
33
+ if str(ROOT) not in sys.path:
34
+ sys.path.append(str(ROOT)) # add ROOT to PATH
35
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
36
+
37
+ from models.common import DetectMultiBackend
38
+ from utils.dataloaders import create_classification_dataloader
39
+ from utils.general import LOGGER, Profile, check_img_size, check_requirements, colorstr, increment_path, print_args
40
+ from utils.torch_utils import select_device, smart_inference_mode
41
+
42
+
43
+ @smart_inference_mode()
44
+ def run(
45
+ data=ROOT / '../datasets/mnist', # dataset dir
46
+ weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
47
+ batch_size=128, # batch size
48
+ imgsz=224, # inference size (pixels)
49
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
50
+ workers=8, # max dataloader workers (per RANK in DDP mode)
51
+ verbose=False, # verbose output
52
+ project=ROOT / 'runs/val-cls', # save to project/name
53
+ name='exp', # save to project/name
54
+ exist_ok=False, # existing project/name ok, do not increment
55
+ half=False, # use FP16 half-precision inference
56
+ dnn=False, # use OpenCV DNN for ONNX inference
57
+ model=None,
58
+ dataloader=None,
59
+ criterion=None,
60
+ pbar=None,
61
+ ):
62
+ # Initialize/load model and set device
63
+ training = model is not None
64
+ if training: # called by train.py
65
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
66
+ half &= device.type != 'cpu' # half precision only supported on CUDA
67
+ model.half() if half else model.float()
68
+ else: # called directly
69
+ device = select_device(device, batch_size=batch_size)
70
+
71
+ # Directories
72
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
73
+ save_dir.mkdir(parents=True, exist_ok=True) # make dir
74
+
75
+ # Load model
76
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
77
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
78
+ imgsz = check_img_size(imgsz, s=stride) # check image size
79
+ half = model.fp16 # FP16 supported on limited backends with CUDA
80
+ if engine:
81
+ batch_size = model.batch_size
82
+ else:
83
+ device = model.device
84
+ if not (pt or jit):
85
+ batch_size = 1 # export.py models default to batch-size 1
86
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
87
+
88
+ # Dataloader
89
+ data = Path(data)
90
+ test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
91
+ dataloader = create_classification_dataloader(path=test_dir,
92
+ imgsz=imgsz,
93
+ batch_size=batch_size,
94
+ augment=False,
95
+ rank=-1,
96
+ workers=workers)
97
+
98
+ model.eval()
99
+ pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
100
+ n = len(dataloader) # number of batches
101
+ action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
102
+ desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
103
+ bar = tqdm(dataloader, desc, n, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', position=0)
104
+ with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
105
+ for images, labels in bar:
106
+ with dt[0]:
107
+ images, labels = images.to(device, non_blocking=True), labels.to(device)
108
+
109
+ with dt[1]:
110
+ y = model(images)
111
+
112
+ with dt[2]:
113
+ pred.append(y.argsort(1, descending=True)[:, :5])
114
+ targets.append(labels)
115
+ if criterion:
116
+ loss += criterion(y, labels)
117
+
118
+ loss /= n
119
+ pred, targets = torch.cat(pred), torch.cat(targets)
120
+ correct = (targets[:, None] == pred).float()
121
+ acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
122
+ top1, top5 = acc.mean(0).tolist()
123
+
124
+ if pbar:
125
+ pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
126
+ if verbose: # all classes
127
+ LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
128
+ LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
129
+ for i, c in model.names.items():
130
+ aci = acc[targets == i]
131
+ top1i, top5i = aci.mean(0).tolist()
132
+ LOGGER.info(f"{c:>24}{aci.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
133
+
134
+ # Print results
135
+ t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
136
+ shape = (1, 3, imgsz, imgsz)
137
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
138
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
139
+
140
+ return top1, top5, loss
141
+
142
+
143
+ def parse_opt():
144
+ parser = argparse.ArgumentParser()
145
+ parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
146
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
147
+ parser.add_argument('--batch-size', type=int, default=128, help='batch size')
148
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
149
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
150
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
151
+ parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
152
+ parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
153
+ parser.add_argument('--name', default='exp', help='save to project/name')
154
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
155
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
156
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
157
+ opt = parser.parse_args()
158
+ print_args(vars(opt))
159
+ return opt
160
+
161
+
162
+ def main(opt):
163
+ check_requirements(exclude=('tensorboard', 'thop'))
164
+ run(**vars(opt))
165
+
166
+
167
+ if __name__ == "__main__":
168
+ opt = parse_opt()
169
+ main(opt)
data/Argoverse.yaml ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Example usage: python train.py --data Argoverse.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── Argoverse ← downloads here (31.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: bus
23
+ 5: truck
24
+ 6: traffic_light
25
+ 7: stop_sign
26
+
27
+
28
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
29
+ download: |
30
+ import json
31
+
32
+ from tqdm import tqdm
33
+ from utils.general import download, Path
34
+
35
+
36
+ def argoverse2yolo(set):
37
+ labels = {}
38
+ a = json.load(open(set, "rb"))
39
+ for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
40
+ img_id = annot['image_id']
41
+ img_name = a['images'][img_id]['name']
42
+ img_label_name = f'{img_name[:-3]}txt'
43
+
44
+ cls = annot['category_id'] # instance class id
45
+ x_center, y_center, width, height = annot['bbox']
46
+ x_center = (x_center + width / 2) / 1920.0 # offset and scale
47
+ y_center = (y_center + height / 2) / 1200.0 # offset and scale
48
+ width /= 1920.0 # scale
49
+ height /= 1200.0 # scale
50
+
51
+ img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
52
+ if not img_dir.exists():
53
+ img_dir.mkdir(parents=True, exist_ok=True)
54
+
55
+ k = str(img_dir / img_label_name)
56
+ if k not in labels:
57
+ labels[k] = []
58
+ labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
59
+
60
+ for k in labels:
61
+ with open(k, "w") as f:
62
+ f.writelines(labels[k])
63
+
64
+
65
+ # Download
66
+ dir = Path(yaml['path']) # dataset root dir
67
+ urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
68
+ download(urls, dir=dir, delete=False)
69
+
70
+ # Convert
71
+ annotations_dir = 'Argoverse-HD/annotations/'
72
+ (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
73
+ for d in "train.json", "val.json":
74
+ argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
data/GlobalWheat2020.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
3
+ # Example usage: python train.py --data GlobalWheat2020.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── GlobalWheat2020 ← downloads here (7.0 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
12
+ train: # train images (relative to 'path') 3422 images
13
+ - images/arvalis_1
14
+ - images/arvalis_2
15
+ - images/arvalis_3
16
+ - images/ethz_1
17
+ - images/rres_1
18
+ - images/inrae_1
19
+ - images/usask_1
20
+ val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21
+ - images/ethz_1
22
+ test: # test images (optional) 1276 images
23
+ - images/utokyo_1
24
+ - images/utokyo_2
25
+ - images/nau_1
26
+ - images/uq_1
27
+
28
+ # Classes
29
+ names:
30
+ 0: wheat_head
31
+
32
+
33
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
34
+ download: |
35
+ from utils.general import download, Path
36
+
37
+
38
+ # Download
39
+ dir = Path(yaml['path']) # dataset root dir
40
+ urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
41
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
42
+ download(urls, dir=dir)
43
+
44
+ # Make Directories
45
+ for p in 'annotations', 'images', 'labels':
46
+ (dir / p).mkdir(parents=True, exist_ok=True)
47
+
48
+ # Move
49
+ for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
50
+ 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
51
+ (dir / p).rename(dir / 'images' / p) # move to /images
52
+ f = (dir / p).with_suffix('.json') # json file
53
+ if f.exists():
54
+ f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
data/ImageNet.yaml ADDED
@@ -0,0 +1,1022 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: python classify/train.py --data imagenet
5
+ # parent
6
+ # β”œβ”€β”€ yolov5
7
+ # └── datasets
8
+ # └── imagenet ← downloads here (144 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/imagenet # dataset root dir
13
+ train: train # train images (relative to 'path') 1281167 images
14
+ val: val # val images (relative to 'path') 50000 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: tench
20
+ 1: goldfish
21
+ 2: great white shark
22
+ 3: tiger shark
23
+ 4: hammerhead shark
24
+ 5: electric ray
25
+ 6: stingray
26
+ 7: cock
27
+ 8: hen
28
+ 9: ostrich
29
+ 10: brambling
30
+ 11: goldfinch
31
+ 12: house finch
32
+ 13: junco
33
+ 14: indigo bunting
34
+ 15: American robin
35
+ 16: bulbul
36
+ 17: jay
37
+ 18: magpie
38
+ 19: chickadee
39
+ 20: American dipper
40
+ 21: kite
41
+ 22: bald eagle
42
+ 23: vulture
43
+ 24: great grey owl
44
+ 25: fire salamander
45
+ 26: smooth newt
46
+ 27: newt
47
+ 28: spotted salamander
48
+ 29: axolotl
49
+ 30: American bullfrog
50
+ 31: tree frog
51
+ 32: tailed frog
52
+ 33: loggerhead sea turtle
53
+ 34: leatherback sea turtle
54
+ 35: mud turtle
55
+ 36: terrapin
56
+ 37: box turtle
57
+ 38: banded gecko
58
+ 39: green iguana
59
+ 40: Carolina anole
60
+ 41: desert grassland whiptail lizard
61
+ 42: agama
62
+ 43: frilled-necked lizard
63
+ 44: alligator lizard
64
+ 45: Gila monster
65
+ 46: European green lizard
66
+ 47: chameleon
67
+ 48: Komodo dragon
68
+ 49: Nile crocodile
69
+ 50: American alligator
70
+ 51: triceratops
71
+ 52: worm snake
72
+ 53: ring-necked snake
73
+ 54: eastern hog-nosed snake
74
+ 55: smooth green snake
75
+ 56: kingsnake
76
+ 57: garter snake
77
+ 58: water snake
78
+ 59: vine snake
79
+ 60: night snake
80
+ 61: boa constrictor
81
+ 62: African rock python
82
+ 63: Indian cobra
83
+ 64: green mamba
84
+ 65: sea snake
85
+ 66: Saharan horned viper
86
+ 67: eastern diamondback rattlesnake
87
+ 68: sidewinder
88
+ 69: trilobite
89
+ 70: harvestman
90
+ 71: scorpion
91
+ 72: yellow garden spider
92
+ 73: barn spider
93
+ 74: European garden spider
94
+ 75: southern black widow
95
+ 76: tarantula
96
+ 77: wolf spider
97
+ 78: tick
98
+ 79: centipede
99
+ 80: black grouse
100
+ 81: ptarmigan
101
+ 82: ruffed grouse
102
+ 83: prairie grouse
103
+ 84: peacock
104
+ 85: quail
105
+ 86: partridge
106
+ 87: grey parrot
107
+ 88: macaw
108
+ 89: sulphur-crested cockatoo
109
+ 90: lorikeet
110
+ 91: coucal
111
+ 92: bee eater
112
+ 93: hornbill
113
+ 94: hummingbird
114
+ 95: jacamar
115
+ 96: toucan
116
+ 97: duck
117
+ 98: red-breasted merganser
118
+ 99: goose
119
+ 100: black swan
120
+ 101: tusker
121
+ 102: echidna
122
+ 103: platypus
123
+ 104: wallaby
124
+ 105: koala
125
+ 106: wombat
126
+ 107: jellyfish
127
+ 108: sea anemone
128
+ 109: brain coral
129
+ 110: flatworm
130
+ 111: nematode
131
+ 112: conch
132
+ 113: snail
133
+ 114: slug
134
+ 115: sea slug
135
+ 116: chiton
136
+ 117: chambered nautilus
137
+ 118: Dungeness crab
138
+ 119: rock crab
139
+ 120: fiddler crab
140
+ 121: red king crab
141
+ 122: American lobster
142
+ 123: spiny lobster
143
+ 124: crayfish
144
+ 125: hermit crab
145
+ 126: isopod
146
+ 127: white stork
147
+ 128: black stork
148
+ 129: spoonbill
149
+ 130: flamingo
150
+ 131: little blue heron
151
+ 132: great egret
152
+ 133: bittern
153
+ 134: crane (bird)
154
+ 135: limpkin
155
+ 136: common gallinule
156
+ 137: American coot
157
+ 138: bustard
158
+ 139: ruddy turnstone
159
+ 140: dunlin
160
+ 141: common redshank
161
+ 142: dowitcher
162
+ 143: oystercatcher
163
+ 144: pelican
164
+ 145: king penguin
165
+ 146: albatross
166
+ 147: grey whale
167
+ 148: killer whale
168
+ 149: dugong
169
+ 150: sea lion
170
+ 151: Chihuahua
171
+ 152: Japanese Chin
172
+ 153: Maltese
173
+ 154: Pekingese
174
+ 155: Shih Tzu
175
+ 156: King Charles Spaniel
176
+ 157: Papillon
177
+ 158: toy terrier
178
+ 159: Rhodesian Ridgeback
179
+ 160: Afghan Hound
180
+ 161: Basset Hound
181
+ 162: Beagle
182
+ 163: Bloodhound
183
+ 164: Bluetick Coonhound
184
+ 165: Black and Tan Coonhound
185
+ 166: Treeing Walker Coonhound
186
+ 167: English foxhound
187
+ 168: Redbone Coonhound
188
+ 169: borzoi
189
+ 170: Irish Wolfhound
190
+ 171: Italian Greyhound
191
+ 172: Whippet
192
+ 173: Ibizan Hound
193
+ 174: Norwegian Elkhound
194
+ 175: Otterhound
195
+ 176: Saluki
196
+ 177: Scottish Deerhound
197
+ 178: Weimaraner
198
+ 179: Staffordshire Bull Terrier
199
+ 180: American Staffordshire Terrier
200
+ 181: Bedlington Terrier
201
+ 182: Border Terrier
202
+ 183: Kerry Blue Terrier
203
+ 184: Irish Terrier
204
+ 185: Norfolk Terrier
205
+ 186: Norwich Terrier
206
+ 187: Yorkshire Terrier
207
+ 188: Wire Fox Terrier
208
+ 189: Lakeland Terrier
209
+ 190: Sealyham Terrier
210
+ 191: Airedale Terrier
211
+ 192: Cairn Terrier
212
+ 193: Australian Terrier
213
+ 194: Dandie Dinmont Terrier
214
+ 195: Boston Terrier
215
+ 196: Miniature Schnauzer
216
+ 197: Giant Schnauzer
217
+ 198: Standard Schnauzer
218
+ 199: Scottish Terrier
219
+ 200: Tibetan Terrier
220
+ 201: Australian Silky Terrier
221
+ 202: Soft-coated Wheaten Terrier
222
+ 203: West Highland White Terrier
223
+ 204: Lhasa Apso
224
+ 205: Flat-Coated Retriever
225
+ 206: Curly-coated Retriever
226
+ 207: Golden Retriever
227
+ 208: Labrador Retriever
228
+ 209: Chesapeake Bay Retriever
229
+ 210: German Shorthaired Pointer
230
+ 211: Vizsla
231
+ 212: English Setter
232
+ 213: Irish Setter
233
+ 214: Gordon Setter
234
+ 215: Brittany
235
+ 216: Clumber Spaniel
236
+ 217: English Springer Spaniel
237
+ 218: Welsh Springer Spaniel
238
+ 219: Cocker Spaniels
239
+ 220: Sussex Spaniel
240
+ 221: Irish Water Spaniel
241
+ 222: Kuvasz
242
+ 223: Schipperke
243
+ 224: Groenendael
244
+ 225: Malinois
245
+ 226: Briard
246
+ 227: Australian Kelpie
247
+ 228: Komondor
248
+ 229: Old English Sheepdog
249
+ 230: Shetland Sheepdog
250
+ 231: collie
251
+ 232: Border Collie
252
+ 233: Bouvier des Flandres
253
+ 234: Rottweiler
254
+ 235: German Shepherd Dog
255
+ 236: Dobermann
256
+ 237: Miniature Pinscher
257
+ 238: Greater Swiss Mountain Dog
258
+ 239: Bernese Mountain Dog
259
+ 240: Appenzeller Sennenhund
260
+ 241: Entlebucher Sennenhund
261
+ 242: Boxer
262
+ 243: Bullmastiff
263
+ 244: Tibetan Mastiff
264
+ 245: French Bulldog
265
+ 246: Great Dane
266
+ 247: St. Bernard
267
+ 248: husky
268
+ 249: Alaskan Malamute
269
+ 250: Siberian Husky
270
+ 251: Dalmatian
271
+ 252: Affenpinscher
272
+ 253: Basenji
273
+ 254: pug
274
+ 255: Leonberger
275
+ 256: Newfoundland
276
+ 257: Pyrenean Mountain Dog
277
+ 258: Samoyed
278
+ 259: Pomeranian
279
+ 260: Chow Chow
280
+ 261: Keeshond
281
+ 262: Griffon Bruxellois
282
+ 263: Pembroke Welsh Corgi
283
+ 264: Cardigan Welsh Corgi
284
+ 265: Toy Poodle
285
+ 266: Miniature Poodle
286
+ 267: Standard Poodle
287
+ 268: Mexican hairless dog
288
+ 269: grey wolf
289
+ 270: Alaskan tundra wolf
290
+ 271: red wolf
291
+ 272: coyote
292
+ 273: dingo
293
+ 274: dhole
294
+ 275: African wild dog
295
+ 276: hyena
296
+ 277: red fox
297
+ 278: kit fox
298
+ 279: Arctic fox
299
+ 280: grey fox
300
+ 281: tabby cat
301
+ 282: tiger cat
302
+ 283: Persian cat
303
+ 284: Siamese cat
304
+ 285: Egyptian Mau
305
+ 286: cougar
306
+ 287: lynx
307
+ 288: leopard
308
+ 289: snow leopard
309
+ 290: jaguar
310
+ 291: lion
311
+ 292: tiger
312
+ 293: cheetah
313
+ 294: brown bear
314
+ 295: American black bear
315
+ 296: polar bear
316
+ 297: sloth bear
317
+ 298: mongoose
318
+ 299: meerkat
319
+ 300: tiger beetle
320
+ 301: ladybug
321
+ 302: ground beetle
322
+ 303: longhorn beetle
323
+ 304: leaf beetle
324
+ 305: dung beetle
325
+ 306: rhinoceros beetle
326
+ 307: weevil
327
+ 308: fly
328
+ 309: bee
329
+ 310: ant
330
+ 311: grasshopper
331
+ 312: cricket
332
+ 313: stick insect
333
+ 314: cockroach
334
+ 315: mantis
335
+ 316: cicada
336
+ 317: leafhopper
337
+ 318: lacewing
338
+ 319: dragonfly
339
+ 320: damselfly
340
+ 321: red admiral
341
+ 322: ringlet
342
+ 323: monarch butterfly
343
+ 324: small white
344
+ 325: sulphur butterfly
345
+ 326: gossamer-winged butterfly
346
+ 327: starfish
347
+ 328: sea urchin
348
+ 329: sea cucumber
349
+ 330: cottontail rabbit
350
+ 331: hare
351
+ 332: Angora rabbit
352
+ 333: hamster
353
+ 334: porcupine
354
+ 335: fox squirrel
355
+ 336: marmot
356
+ 337: beaver
357
+ 338: guinea pig
358
+ 339: common sorrel
359
+ 340: zebra
360
+ 341: pig
361
+ 342: wild boar
362
+ 343: warthog
363
+ 344: hippopotamus
364
+ 345: ox
365
+ 346: water buffalo
366
+ 347: bison
367
+ 348: ram
368
+ 349: bighorn sheep
369
+ 350: Alpine ibex
370
+ 351: hartebeest
371
+ 352: impala
372
+ 353: gazelle
373
+ 354: dromedary
374
+ 355: llama
375
+ 356: weasel
376
+ 357: mink
377
+ 358: European polecat
378
+ 359: black-footed ferret
379
+ 360: otter
380
+ 361: skunk
381
+ 362: badger
382
+ 363: armadillo
383
+ 364: three-toed sloth
384
+ 365: orangutan
385
+ 366: gorilla
386
+ 367: chimpanzee
387
+ 368: gibbon
388
+ 369: siamang
389
+ 370: guenon
390
+ 371: patas monkey
391
+ 372: baboon
392
+ 373: macaque
393
+ 374: langur
394
+ 375: black-and-white colobus
395
+ 376: proboscis monkey
396
+ 377: marmoset
397
+ 378: white-headed capuchin
398
+ 379: howler monkey
399
+ 380: titi
400
+ 381: Geoffroy's spider monkey
401
+ 382: common squirrel monkey
402
+ 383: ring-tailed lemur
403
+ 384: indri
404
+ 385: Asian elephant
405
+ 386: African bush elephant
406
+ 387: red panda
407
+ 388: giant panda
408
+ 389: snoek
409
+ 390: eel
410
+ 391: coho salmon
411
+ 392: rock beauty
412
+ 393: clownfish
413
+ 394: sturgeon
414
+ 395: garfish
415
+ 396: lionfish
416
+ 397: pufferfish
417
+ 398: abacus
418
+ 399: abaya
419
+ 400: academic gown
420
+ 401: accordion
421
+ 402: acoustic guitar
422
+ 403: aircraft carrier
423
+ 404: airliner
424
+ 405: airship
425
+ 406: altar
426
+ 407: ambulance
427
+ 408: amphibious vehicle
428
+ 409: analog clock
429
+ 410: apiary
430
+ 411: apron
431
+ 412: waste container
432
+ 413: assault rifle
433
+ 414: backpack
434
+ 415: bakery
435
+ 416: balance beam
436
+ 417: balloon
437
+ 418: ballpoint pen
438
+ 419: Band-Aid
439
+ 420: banjo
440
+ 421: baluster
441
+ 422: barbell
442
+ 423: barber chair
443
+ 424: barbershop
444
+ 425: barn
445
+ 426: barometer
446
+ 427: barrel
447
+ 428: wheelbarrow
448
+ 429: baseball
449
+ 430: basketball
450
+ 431: bassinet
451
+ 432: bassoon
452
+ 433: swimming cap
453
+ 434: bath towel
454
+ 435: bathtub
455
+ 436: station wagon
456
+ 437: lighthouse
457
+ 438: beaker
458
+ 439: military cap
459
+ 440: beer bottle
460
+ 441: beer glass
461
+ 442: bell-cot
462
+ 443: bib
463
+ 444: tandem bicycle
464
+ 445: bikini
465
+ 446: ring binder
466
+ 447: binoculars
467
+ 448: birdhouse
468
+ 449: boathouse
469
+ 450: bobsleigh
470
+ 451: bolo tie
471
+ 452: poke bonnet
472
+ 453: bookcase
473
+ 454: bookstore
474
+ 455: bottle cap
475
+ 456: bow
476
+ 457: bow tie
477
+ 458: brass
478
+ 459: bra
479
+ 460: breakwater
480
+ 461: breastplate
481
+ 462: broom
482
+ 463: bucket
483
+ 464: buckle
484
+ 465: bulletproof vest
485
+ 466: high-speed train
486
+ 467: butcher shop
487
+ 468: taxicab
488
+ 469: cauldron
489
+ 470: candle
490
+ 471: cannon
491
+ 472: canoe
492
+ 473: can opener
493
+ 474: cardigan
494
+ 475: car mirror
495
+ 476: carousel
496
+ 477: tool kit
497
+ 478: carton
498
+ 479: car wheel
499
+ 480: automated teller machine
500
+ 481: cassette
501
+ 482: cassette player
502
+ 483: castle
503
+ 484: catamaran
504
+ 485: CD player
505
+ 486: cello
506
+ 487: mobile phone
507
+ 488: chain
508
+ 489: chain-link fence
509
+ 490: chain mail
510
+ 491: chainsaw
511
+ 492: chest
512
+ 493: chiffonier
513
+ 494: chime
514
+ 495: china cabinet
515
+ 496: Christmas stocking
516
+ 497: church
517
+ 498: movie theater
518
+ 499: cleaver
519
+ 500: cliff dwelling
520
+ 501: cloak
521
+ 502: clogs
522
+ 503: cocktail shaker
523
+ 504: coffee mug
524
+ 505: coffeemaker
525
+ 506: coil
526
+ 507: combination lock
527
+ 508: computer keyboard
528
+ 509: confectionery store
529
+ 510: container ship
530
+ 511: convertible
531
+ 512: corkscrew
532
+ 513: cornet
533
+ 514: cowboy boot
534
+ 515: cowboy hat
535
+ 516: cradle
536
+ 517: crane (machine)
537
+ 518: crash helmet
538
+ 519: crate
539
+ 520: infant bed
540
+ 521: Crock Pot
541
+ 522: croquet ball
542
+ 523: crutch
543
+ 524: cuirass
544
+ 525: dam
545
+ 526: desk
546
+ 527: desktop computer
547
+ 528: rotary dial telephone
548
+ 529: diaper
549
+ 530: digital clock
550
+ 531: digital watch
551
+ 532: dining table
552
+ 533: dishcloth
553
+ 534: dishwasher
554
+ 535: disc brake
555
+ 536: dock
556
+ 537: dog sled
557
+ 538: dome
558
+ 539: doormat
559
+ 540: drilling rig
560
+ 541: drum
561
+ 542: drumstick
562
+ 543: dumbbell
563
+ 544: Dutch oven
564
+ 545: electric fan
565
+ 546: electric guitar
566
+ 547: electric locomotive
567
+ 548: entertainment center
568
+ 549: envelope
569
+ 550: espresso machine
570
+ 551: face powder
571
+ 552: feather boa
572
+ 553: filing cabinet
573
+ 554: fireboat
574
+ 555: fire engine
575
+ 556: fire screen sheet
576
+ 557: flagpole
577
+ 558: flute
578
+ 559: folding chair
579
+ 560: football helmet
580
+ 561: forklift
581
+ 562: fountain
582
+ 563: fountain pen
583
+ 564: four-poster bed
584
+ 565: freight car
585
+ 566: French horn
586
+ 567: frying pan
587
+ 568: fur coat
588
+ 569: garbage truck
589
+ 570: gas mask
590
+ 571: gas pump
591
+ 572: goblet
592
+ 573: go-kart
593
+ 574: golf ball
594
+ 575: golf cart
595
+ 576: gondola
596
+ 577: gong
597
+ 578: gown
598
+ 579: grand piano
599
+ 580: greenhouse
600
+ 581: grille
601
+ 582: grocery store
602
+ 583: guillotine
603
+ 584: barrette
604
+ 585: hair spray
605
+ 586: half-track
606
+ 587: hammer
607
+ 588: hamper
608
+ 589: hair dryer
609
+ 590: hand-held computer
610
+ 591: handkerchief
611
+ 592: hard disk drive
612
+ 593: harmonica
613
+ 594: harp
614
+ 595: harvester
615
+ 596: hatchet
616
+ 597: holster
617
+ 598: home theater
618
+ 599: honeycomb
619
+ 600: hook
620
+ 601: hoop skirt
621
+ 602: horizontal bar
622
+ 603: horse-drawn vehicle
623
+ 604: hourglass
624
+ 605: iPod
625
+ 606: clothes iron
626
+ 607: jack-o'-lantern
627
+ 608: jeans
628
+ 609: jeep
629
+ 610: T-shirt
630
+ 611: jigsaw puzzle
631
+ 612: pulled rickshaw
632
+ 613: joystick
633
+ 614: kimono
634
+ 615: knee pad
635
+ 616: knot
636
+ 617: lab coat
637
+ 618: ladle
638
+ 619: lampshade
639
+ 620: laptop computer
640
+ 621: lawn mower
641
+ 622: lens cap
642
+ 623: paper knife
643
+ 624: library
644
+ 625: lifeboat
645
+ 626: lighter
646
+ 627: limousine
647
+ 628: ocean liner
648
+ 629: lipstick
649
+ 630: slip-on shoe
650
+ 631: lotion
651
+ 632: speaker
652
+ 633: loupe
653
+ 634: sawmill
654
+ 635: magnetic compass
655
+ 636: mail bag
656
+ 637: mailbox
657
+ 638: tights
658
+ 639: tank suit
659
+ 640: manhole cover
660
+ 641: maraca
661
+ 642: marimba
662
+ 643: mask
663
+ 644: match
664
+ 645: maypole
665
+ 646: maze
666
+ 647: measuring cup
667
+ 648: medicine chest
668
+ 649: megalith
669
+ 650: microphone
670
+ 651: microwave oven
671
+ 652: military uniform
672
+ 653: milk can
673
+ 654: minibus
674
+ 655: miniskirt
675
+ 656: minivan
676
+ 657: missile
677
+ 658: mitten
678
+ 659: mixing bowl
679
+ 660: mobile home
680
+ 661: Model T
681
+ 662: modem
682
+ 663: monastery
683
+ 664: monitor
684
+ 665: moped
685
+ 666: mortar
686
+ 667: square academic cap
687
+ 668: mosque
688
+ 669: mosquito net
689
+ 670: scooter
690
+ 671: mountain bike
691
+ 672: tent
692
+ 673: computer mouse
693
+ 674: mousetrap
694
+ 675: moving van
695
+ 676: muzzle
696
+ 677: nail
697
+ 678: neck brace
698
+ 679: necklace
699
+ 680: nipple
700
+ 681: notebook computer
701
+ 682: obelisk
702
+ 683: oboe
703
+ 684: ocarina
704
+ 685: odometer
705
+ 686: oil filter
706
+ 687: organ
707
+ 688: oscilloscope
708
+ 689: overskirt
709
+ 690: bullock cart
710
+ 691: oxygen mask
711
+ 692: packet
712
+ 693: paddle
713
+ 694: paddle wheel
714
+ 695: padlock
715
+ 696: paintbrush
716
+ 697: pajamas
717
+ 698: palace
718
+ 699: pan flute
719
+ 700: paper towel
720
+ 701: parachute
721
+ 702: parallel bars
722
+ 703: park bench
723
+ 704: parking meter
724
+ 705: passenger car
725
+ 706: patio
726
+ 707: payphone
727
+ 708: pedestal
728
+ 709: pencil case
729
+ 710: pencil sharpener
730
+ 711: perfume
731
+ 712: Petri dish
732
+ 713: photocopier
733
+ 714: plectrum
734
+ 715: Pickelhaube
735
+ 716: picket fence
736
+ 717: pickup truck
737
+ 718: pier
738
+ 719: piggy bank
739
+ 720: pill bottle
740
+ 721: pillow
741
+ 722: ping-pong ball
742
+ 723: pinwheel
743
+ 724: pirate ship
744
+ 725: pitcher
745
+ 726: hand plane
746
+ 727: planetarium
747
+ 728: plastic bag
748
+ 729: plate rack
749
+ 730: plow
750
+ 731: plunger
751
+ 732: Polaroid camera
752
+ 733: pole
753
+ 734: police van
754
+ 735: poncho
755
+ 736: billiard table
756
+ 737: soda bottle
757
+ 738: pot
758
+ 739: potter's wheel
759
+ 740: power drill
760
+ 741: prayer rug
761
+ 742: printer
762
+ 743: prison
763
+ 744: projectile
764
+ 745: projector
765
+ 746: hockey puck
766
+ 747: punching bag
767
+ 748: purse
768
+ 749: quill
769
+ 750: quilt
770
+ 751: race car
771
+ 752: racket
772
+ 753: radiator
773
+ 754: radio
774
+ 755: radio telescope
775
+ 756: rain barrel
776
+ 757: recreational vehicle
777
+ 758: reel
778
+ 759: reflex camera
779
+ 760: refrigerator
780
+ 761: remote control
781
+ 762: restaurant
782
+ 763: revolver
783
+ 764: rifle
784
+ 765: rocking chair
785
+ 766: rotisserie
786
+ 767: eraser
787
+ 768: rugby ball
788
+ 769: ruler
789
+ 770: running shoe
790
+ 771: safe
791
+ 772: safety pin
792
+ 773: salt shaker
793
+ 774: sandal
794
+ 775: sarong
795
+ 776: saxophone
796
+ 777: scabbard
797
+ 778: weighing scale
798
+ 779: school bus
799
+ 780: schooner
800
+ 781: scoreboard
801
+ 782: CRT screen
802
+ 783: screw
803
+ 784: screwdriver
804
+ 785: seat belt
805
+ 786: sewing machine
806
+ 787: shield
807
+ 788: shoe store
808
+ 789: shoji
809
+ 790: shopping basket
810
+ 791: shopping cart
811
+ 792: shovel
812
+ 793: shower cap
813
+ 794: shower curtain
814
+ 795: ski
815
+ 796: ski mask
816
+ 797: sleeping bag
817
+ 798: slide rule
818
+ 799: sliding door
819
+ 800: slot machine
820
+ 801: snorkel
821
+ 802: snowmobile
822
+ 803: snowplow
823
+ 804: soap dispenser
824
+ 805: soccer ball
825
+ 806: sock
826
+ 807: solar thermal collector
827
+ 808: sombrero
828
+ 809: soup bowl
829
+ 810: space bar
830
+ 811: space heater
831
+ 812: space shuttle
832
+ 813: spatula
833
+ 814: motorboat
834
+ 815: spider web
835
+ 816: spindle
836
+ 817: sports car
837
+ 818: spotlight
838
+ 819: stage
839
+ 820: steam locomotive
840
+ 821: through arch bridge
841
+ 822: steel drum
842
+ 823: stethoscope
843
+ 824: scarf
844
+ 825: stone wall
845
+ 826: stopwatch
846
+ 827: stove
847
+ 828: strainer
848
+ 829: tram
849
+ 830: stretcher
850
+ 831: couch
851
+ 832: stupa
852
+ 833: submarine
853
+ 834: suit
854
+ 835: sundial
855
+ 836: sunglass
856
+ 837: sunglasses
857
+ 838: sunscreen
858
+ 839: suspension bridge
859
+ 840: mop
860
+ 841: sweatshirt
861
+ 842: swimsuit
862
+ 843: swing
863
+ 844: switch
864
+ 845: syringe
865
+ 846: table lamp
866
+ 847: tank
867
+ 848: tape player
868
+ 849: teapot
869
+ 850: teddy bear
870
+ 851: television
871
+ 852: tennis ball
872
+ 853: thatched roof
873
+ 854: front curtain
874
+ 855: thimble
875
+ 856: threshing machine
876
+ 857: throne
877
+ 858: tile roof
878
+ 859: toaster
879
+ 860: tobacco shop
880
+ 861: toilet seat
881
+ 862: torch
882
+ 863: totem pole
883
+ 864: tow truck
884
+ 865: toy store
885
+ 866: tractor
886
+ 867: semi-trailer truck
887
+ 868: tray
888
+ 869: trench coat
889
+ 870: tricycle
890
+ 871: trimaran
891
+ 872: tripod
892
+ 873: triumphal arch
893
+ 874: trolleybus
894
+ 875: trombone
895
+ 876: tub
896
+ 877: turnstile
897
+ 878: typewriter keyboard
898
+ 879: umbrella
899
+ 880: unicycle
900
+ 881: upright piano
901
+ 882: vacuum cleaner
902
+ 883: vase
903
+ 884: vault
904
+ 885: velvet
905
+ 886: vending machine
906
+ 887: vestment
907
+ 888: viaduct
908
+ 889: violin
909
+ 890: volleyball
910
+ 891: waffle iron
911
+ 892: wall clock
912
+ 893: wallet
913
+ 894: wardrobe
914
+ 895: military aircraft
915
+ 896: sink
916
+ 897: washing machine
917
+ 898: water bottle
918
+ 899: water jug
919
+ 900: water tower
920
+ 901: whiskey jug
921
+ 902: whistle
922
+ 903: wig
923
+ 904: window screen
924
+ 905: window shade
925
+ 906: Windsor tie
926
+ 907: wine bottle
927
+ 908: wing
928
+ 909: wok
929
+ 910: wooden spoon
930
+ 911: wool
931
+ 912: split-rail fence
932
+ 913: shipwreck
933
+ 914: yawl
934
+ 915: yurt
935
+ 916: website
936
+ 917: comic book
937
+ 918: crossword
938
+ 919: traffic sign
939
+ 920: traffic light
940
+ 921: dust jacket
941
+ 922: menu
942
+ 923: plate
943
+ 924: guacamole
944
+ 925: consomme
945
+ 926: hot pot
946
+ 927: trifle
947
+ 928: ice cream
948
+ 929: ice pop
949
+ 930: baguette
950
+ 931: bagel
951
+ 932: pretzel
952
+ 933: cheeseburger
953
+ 934: hot dog
954
+ 935: mashed potato
955
+ 936: cabbage
956
+ 937: broccoli
957
+ 938: cauliflower
958
+ 939: zucchini
959
+ 940: spaghetti squash
960
+ 941: acorn squash
961
+ 942: butternut squash
962
+ 943: cucumber
963
+ 944: artichoke
964
+ 945: bell pepper
965
+ 946: cardoon
966
+ 947: mushroom
967
+ 948: Granny Smith
968
+ 949: strawberry
969
+ 950: orange
970
+ 951: lemon
971
+ 952: fig
972
+ 953: pineapple
973
+ 954: banana
974
+ 955: jackfruit
975
+ 956: custard apple
976
+ 957: pomegranate
977
+ 958: hay
978
+ 959: carbonara
979
+ 960: chocolate syrup
980
+ 961: dough
981
+ 962: meatloaf
982
+ 963: pizza
983
+ 964: pot pie
984
+ 965: burrito
985
+ 966: red wine
986
+ 967: espresso
987
+ 968: cup
988
+ 969: eggnog
989
+ 970: alp
990
+ 971: bubble
991
+ 972: cliff
992
+ 973: coral reef
993
+ 974: geyser
994
+ 975: lakeshore
995
+ 976: promontory
996
+ 977: shoal
997
+ 978: seashore
998
+ 979: valley
999
+ 980: volcano
1000
+ 981: baseball player
1001
+ 982: bridegroom
1002
+ 983: scuba diver
1003
+ 984: rapeseed
1004
+ 985: daisy
1005
+ 986: yellow lady's slipper
1006
+ 987: corn
1007
+ 988: acorn
1008
+ 989: rose hip
1009
+ 990: horse chestnut seed
1010
+ 991: coral fungus
1011
+ 992: agaric
1012
+ 993: gyromitra
1013
+ 994: stinkhorn mushroom
1014
+ 995: earth star
1015
+ 996: hen-of-the-woods
1016
+ 997: bolete
1017
+ 998: ear
1018
+ 999: toilet paper
1019
+
1020
+
1021
+ # Download script/URL (optional)
1022
+ download: data/scripts/get_imagenet.sh
data/Objects365.yaml ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Objects365 dataset https://www.objects365.org/ by Megvii
3
+ # Example usage: python train.py --data Objects365.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
13
+ val: images/val # val images (relative to 'path') 80000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: Person
19
+ 1: Sneakers
20
+ 2: Chair
21
+ 3: Other Shoes
22
+ 4: Hat
23
+ 5: Car
24
+ 6: Lamp
25
+ 7: Glasses
26
+ 8: Bottle
27
+ 9: Desk
28
+ 10: Cup
29
+ 11: Street Lights
30
+ 12: Cabinet/shelf
31
+ 13: Handbag/Satchel
32
+ 14: Bracelet
33
+ 15: Plate
34
+ 16: Picture/Frame
35
+ 17: Helmet
36
+ 18: Book
37
+ 19: Gloves
38
+ 20: Storage box
39
+ 21: Boat
40
+ 22: Leather Shoes
41
+ 23: Flower
42
+ 24: Bench
43
+ 25: Potted Plant
44
+ 26: Bowl/Basin
45
+ 27: Flag
46
+ 28: Pillow
47
+ 29: Boots
48
+ 30: Vase
49
+ 31: Microphone
50
+ 32: Necklace
51
+ 33: Ring
52
+ 34: SUV
53
+ 35: Wine Glass
54
+ 36: Belt
55
+ 37: Monitor/TV
56
+ 38: Backpack
57
+ 39: Umbrella
58
+ 40: Traffic Light
59
+ 41: Speaker
60
+ 42: Watch
61
+ 43: Tie
62
+ 44: Trash bin Can
63
+ 45: Slippers
64
+ 46: Bicycle
65
+ 47: Stool
66
+ 48: Barrel/bucket
67
+ 49: Van
68
+ 50: Couch
69
+ 51: Sandals
70
+ 52: Basket
71
+ 53: Drum
72
+ 54: Pen/Pencil
73
+ 55: Bus
74
+ 56: Wild Bird
75
+ 57: High Heels
76
+ 58: Motorcycle
77
+ 59: Guitar
78
+ 60: Carpet
79
+ 61: Cell Phone
80
+ 62: Bread
81
+ 63: Camera
82
+ 64: Canned
83
+ 65: Truck
84
+ 66: Traffic cone
85
+ 67: Cymbal
86
+ 68: Lifesaver
87
+ 69: Towel
88
+ 70: Stuffed Toy
89
+ 71: Candle
90
+ 72: Sailboat
91
+ 73: Laptop
92
+ 74: Awning
93
+ 75: Bed
94
+ 76: Faucet
95
+ 77: Tent
96
+ 78: Horse
97
+ 79: Mirror
98
+ 80: Power outlet
99
+ 81: Sink
100
+ 82: Apple
101
+ 83: Air Conditioner
102
+ 84: Knife
103
+ 85: Hockey Stick
104
+ 86: Paddle
105
+ 87: Pickup Truck
106
+ 88: Fork
107
+ 89: Traffic Sign
108
+ 90: Balloon
109
+ 91: Tripod
110
+ 92: Dog
111
+ 93: Spoon
112
+ 94: Clock
113
+ 95: Pot
114
+ 96: Cow
115
+ 97: Cake
116
+ 98: Dinning Table
117
+ 99: Sheep
118
+ 100: Hanger
119
+ 101: Blackboard/Whiteboard
120
+ 102: Napkin
121
+ 103: Other Fish
122
+ 104: Orange/Tangerine
123
+ 105: Toiletry
124
+ 106: Keyboard
125
+ 107: Tomato
126
+ 108: Lantern
127
+ 109: Machinery Vehicle
128
+ 110: Fan
129
+ 111: Green Vegetables
130
+ 112: Banana
131
+ 113: Baseball Glove
132
+ 114: Airplane
133
+ 115: Mouse
134
+ 116: Train
135
+ 117: Pumpkin
136
+ 118: Soccer
137
+ 119: Skiboard
138
+ 120: Luggage
139
+ 121: Nightstand
140
+ 122: Tea pot
141
+ 123: Telephone
142
+ 124: Trolley
143
+ 125: Head Phone
144
+ 126: Sports Car
145
+ 127: Stop Sign
146
+ 128: Dessert
147
+ 129: Scooter
148
+ 130: Stroller
149
+ 131: Crane
150
+ 132: Remote
151
+ 133: Refrigerator
152
+ 134: Oven
153
+ 135: Lemon
154
+ 136: Duck
155
+ 137: Baseball Bat
156
+ 138: Surveillance Camera
157
+ 139: Cat
158
+ 140: Jug
159
+ 141: Broccoli
160
+ 142: Piano
161
+ 143: Pizza
162
+ 144: Elephant
163
+ 145: Skateboard
164
+ 146: Surfboard
165
+ 147: Gun
166
+ 148: Skating and Skiing shoes
167
+ 149: Gas stove
168
+ 150: Donut
169
+ 151: Bow Tie
170
+ 152: Carrot
171
+ 153: Toilet
172
+ 154: Kite
173
+ 155: Strawberry
174
+ 156: Other Balls
175
+ 157: Shovel
176
+ 158: Pepper
177
+ 159: Computer Box
178
+ 160: Toilet Paper
179
+ 161: Cleaning Products
180
+ 162: Chopsticks
181
+ 163: Microwave
182
+ 164: Pigeon
183
+ 165: Baseball
184
+ 166: Cutting/chopping Board
185
+ 167: Coffee Table
186
+ 168: Side Table
187
+ 169: Scissors
188
+ 170: Marker
189
+ 171: Pie
190
+ 172: Ladder
191
+ 173: Snowboard
192
+ 174: Cookies
193
+ 175: Radiator
194
+ 176: Fire Hydrant
195
+ 177: Basketball
196
+ 178: Zebra
197
+ 179: Grape
198
+ 180: Giraffe
199
+ 181: Potato
200
+ 182: Sausage
201
+ 183: Tricycle
202
+ 184: Violin
203
+ 185: Egg
204
+ 186: Fire Extinguisher
205
+ 187: Candy
206
+ 188: Fire Truck
207
+ 189: Billiards
208
+ 190: Converter
209
+ 191: Bathtub
210
+ 192: Wheelchair
211
+ 193: Golf Club
212
+ 194: Briefcase
213
+ 195: Cucumber
214
+ 196: Cigar/Cigarette
215
+ 197: Paint Brush
216
+ 198: Pear
217
+ 199: Heavy Truck
218
+ 200: Hamburger
219
+ 201: Extractor
220
+ 202: Extension Cord
221
+ 203: Tong
222
+ 204: Tennis Racket
223
+ 205: Folder
224
+ 206: American Football
225
+ 207: earphone
226
+ 208: Mask
227
+ 209: Kettle
228
+ 210: Tennis
229
+ 211: Ship
230
+ 212: Swing
231
+ 213: Coffee Machine
232
+ 214: Slide
233
+ 215: Carriage
234
+ 216: Onion
235
+ 217: Green beans
236
+ 218: Projector
237
+ 219: Frisbee
238
+ 220: Washing Machine/Drying Machine
239
+ 221: Chicken
240
+ 222: Printer
241
+ 223: Watermelon
242
+ 224: Saxophone
243
+ 225: Tissue
244
+ 226: Toothbrush
245
+ 227: Ice cream
246
+ 228: Hot-air balloon
247
+ 229: Cello
248
+ 230: French Fries
249
+ 231: Scale
250
+ 232: Trophy
251
+ 233: Cabbage
252
+ 234: Hot dog
253
+ 235: Blender
254
+ 236: Peach
255
+ 237: Rice
256
+ 238: Wallet/Purse
257
+ 239: Volleyball
258
+ 240: Deer
259
+ 241: Goose
260
+ 242: Tape
261
+ 243: Tablet
262
+ 244: Cosmetics
263
+ 245: Trumpet
264
+ 246: Pineapple
265
+ 247: Golf Ball
266
+ 248: Ambulance
267
+ 249: Parking meter
268
+ 250: Mango
269
+ 251: Key
270
+ 252: Hurdle
271
+ 253: Fishing Rod
272
+ 254: Medal
273
+ 255: Flute
274
+ 256: Brush
275
+ 257: Penguin
276
+ 258: Megaphone
277
+ 259: Corn
278
+ 260: Lettuce
279
+ 261: Garlic
280
+ 262: Swan
281
+ 263: Helicopter
282
+ 264: Green Onion
283
+ 265: Sandwich
284
+ 266: Nuts
285
+ 267: Speed Limit Sign
286
+ 268: Induction Cooker
287
+ 269: Broom
288
+ 270: Trombone
289
+ 271: Plum
290
+ 272: Rickshaw
291
+ 273: Goldfish
292
+ 274: Kiwi fruit
293
+ 275: Router/modem
294
+ 276: Poker Card
295
+ 277: Toaster
296
+ 278: Shrimp
297
+ 279: Sushi
298
+ 280: Cheese
299
+ 281: Notepaper
300
+ 282: Cherry
301
+ 283: Pliers
302
+ 284: CD
303
+ 285: Pasta
304
+ 286: Hammer
305
+ 287: Cue
306
+ 288: Avocado
307
+ 289: Hamimelon
308
+ 290: Flask
309
+ 291: Mushroom
310
+ 292: Screwdriver
311
+ 293: Soap
312
+ 294: Recorder
313
+ 295: Bear
314
+ 296: Eggplant
315
+ 297: Board Eraser
316
+ 298: Coconut
317
+ 299: Tape Measure/Ruler
318
+ 300: Pig
319
+ 301: Showerhead
320
+ 302: Globe
321
+ 303: Chips
322
+ 304: Steak
323
+ 305: Crosswalk Sign
324
+ 306: Stapler
325
+ 307: Camel
326
+ 308: Formula 1
327
+ 309: Pomegranate
328
+ 310: Dishwasher
329
+ 311: Crab
330
+ 312: Hoverboard
331
+ 313: Meat ball
332
+ 314: Rice Cooker
333
+ 315: Tuba
334
+ 316: Calculator
335
+ 317: Papaya
336
+ 318: Antelope
337
+ 319: Parrot
338
+ 320: Seal
339
+ 321: Butterfly
340
+ 322: Dumbbell
341
+ 323: Donkey
342
+ 324: Lion
343
+ 325: Urinal
344
+ 326: Dolphin
345
+ 327: Electric Drill
346
+ 328: Hair Dryer
347
+ 329: Egg tart
348
+ 330: Jellyfish
349
+ 331: Treadmill
350
+ 332: Lighter
351
+ 333: Grapefruit
352
+ 334: Game board
353
+ 335: Mop
354
+ 336: Radish
355
+ 337: Baozi
356
+ 338: Target
357
+ 339: French
358
+ 340: Spring Rolls
359
+ 341: Monkey
360
+ 342: Rabbit
361
+ 343: Pencil Case
362
+ 344: Yak
363
+ 345: Red Cabbage
364
+ 346: Binoculars
365
+ 347: Asparagus
366
+ 348: Barbell
367
+ 349: Scallop
368
+ 350: Noddles
369
+ 351: Comb
370
+ 352: Dumpling
371
+ 353: Oyster
372
+ 354: Table Tennis paddle
373
+ 355: Cosmetics Brush/Eyeliner Pencil
374
+ 356: Chainsaw
375
+ 357: Eraser
376
+ 358: Lobster
377
+ 359: Durian
378
+ 360: Okra
379
+ 361: Lipstick
380
+ 362: Cosmetics Mirror
381
+ 363: Curling
382
+ 364: Table Tennis
383
+
384
+
385
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
386
+ download: |
387
+ from tqdm import tqdm
388
+
389
+ from utils.general import Path, check_requirements, download, np, xyxy2xywhn
390
+
391
+ check_requirements(('pycocotools>=2.0',))
392
+ from pycocotools.coco import COCO
393
+
394
+ # Make Directories
395
+ dir = Path(yaml['path']) # dataset root dir
396
+ for p in 'images', 'labels':
397
+ (dir / p).mkdir(parents=True, exist_ok=True)
398
+ for q in 'train', 'val':
399
+ (dir / p / q).mkdir(parents=True, exist_ok=True)
400
+
401
+ # Train, Val Splits
402
+ for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
403
+ print(f"Processing {split} in {patches} patches ...")
404
+ images, labels = dir / 'images' / split, dir / 'labels' / split
405
+
406
+ # Download
407
+ url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
408
+ if split == 'train':
409
+ download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
410
+ download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
411
+ elif split == 'val':
412
+ download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
413
+ download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
414
+ download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
415
+
416
+ # Move
417
+ for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
418
+ f.rename(images / f.name) # move to /images/{split}
419
+
420
+ # Labels
421
+ coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
422
+ names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
423
+ for cid, cat in enumerate(names):
424
+ catIds = coco.getCatIds(catNms=[cat])
425
+ imgIds = coco.getImgIds(catIds=catIds)
426
+ for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
427
+ width, height = im["width"], im["height"]
428
+ path = Path(im["file_name"]) # image filename
429
+ try:
430
+ with open(labels / path.with_suffix('.txt').name, 'a') as file:
431
+ annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
432
+ for a in coco.loadAnns(annIds):
433
+ x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
434
+ xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
435
+ x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
436
+ file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
437
+ except Exception as e:
438
+ print(e)
data/SKU-110K.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
+ # Example usage: python train.py --data SKU-110K.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── SKU-110K ← downloads here (13.6 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: object
19
+
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ import shutil
24
+ from tqdm import tqdm
25
+ from utils.general import np, pd, Path, download, xyxy2xywh
26
+
27
+
28
+ # Download
29
+ dir = Path(yaml['path']) # dataset root dir
30
+ parent = Path(dir.parent) # download dir
31
+ urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
32
+ download(urls, dir=parent, delete=False)
33
+
34
+ # Rename directories
35
+ if dir.exists():
36
+ shutil.rmtree(dir)
37
+ (parent / 'SKU110K_fixed').rename(dir) # rename dir
38
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
39
+
40
+ # Convert labels
41
+ names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
42
+ for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
43
+ x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
44
+ images, unique_images = x[:, 0], np.unique(x[:, 0])
45
+ with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
46
+ f.writelines(f'./images/{s}\n' for s in unique_images)
47
+ for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
48
+ cls = 0 # single-class dataset
49
+ with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
50
+ for r in x[images == im]:
51
+ w, h = r[6], r[7] # image width, height
52
+ xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
53
+ f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
data/VOC.yaml ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
+ # Example usage: python train.py --data VOC.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── VOC ← downloads here (2.8 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VOC
12
+ train: # train images (relative to 'path') 16551 images
13
+ - images/train2012
14
+ - images/train2007
15
+ - images/val2012
16
+ - images/val2007
17
+ val: # val images (relative to 'path') 4952 images
18
+ - images/test2007
19
+ test: # test images (optional)
20
+ - images/test2007
21
+
22
+ # Classes
23
+ names:
24
+ 0: aeroplane
25
+ 1: bicycle
26
+ 2: bird
27
+ 3: boat
28
+ 4: bottle
29
+ 5: bus
30
+ 6: car
31
+ 7: cat
32
+ 8: chair
33
+ 9: cow
34
+ 10: diningtable
35
+ 11: dog
36
+ 12: horse
37
+ 13: motorbike
38
+ 14: person
39
+ 15: pottedplant
40
+ 16: sheep
41
+ 17: sofa
42
+ 18: train
43
+ 19: tvmonitor
44
+
45
+
46
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
47
+ download: |
48
+ import xml.etree.ElementTree as ET
49
+
50
+ from tqdm import tqdm
51
+ from utils.general import download, Path
52
+
53
+
54
+ def convert_label(path, lb_path, year, image_id):
55
+ def convert_box(size, box):
56
+ dw, dh = 1. / size[0], 1. / size[1]
57
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
58
+ return x * dw, y * dh, w * dw, h * dh
59
+
60
+ in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
61
+ out_file = open(lb_path, 'w')
62
+ tree = ET.parse(in_file)
63
+ root = tree.getroot()
64
+ size = root.find('size')
65
+ w = int(size.find('width').text)
66
+ h = int(size.find('height').text)
67
+
68
+ names = list(yaml['names'].values()) # names list
69
+ for obj in root.iter('object'):
70
+ cls = obj.find('name').text
71
+ if cls in names and int(obj.find('difficult').text) != 1:
72
+ xmlbox = obj.find('bndbox')
73
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
74
+ cls_id = names.index(cls) # class id
75
+ out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
76
+
77
+
78
+ # Download
79
+ dir = Path(yaml['path']) # dataset root dir
80
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
81
+ urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
82
+ f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
83
+ f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
84
+ download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
85
+
86
+ # Convert
87
+ path = dir / 'images/VOCdevkit'
88
+ for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
89
+ imgs_path = dir / 'images' / f'{image_set}{year}'
90
+ lbs_path = dir / 'labels' / f'{image_set}{year}'
91
+ imgs_path.mkdir(exist_ok=True, parents=True)
92
+ lbs_path.mkdir(exist_ok=True, parents=True)
93
+
94
+ with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
95
+ image_ids = f.read().strip().split()
96
+ for id in tqdm(image_ids, desc=f'{image_set}{year}'):
97
+ f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
98
+ lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
99
+ f.rename(imgs_path / f.name) # move image
100
+ convert_label(path, lb_path, year, id) # convert labels to YOLO format
data/VisDrone.yaml ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
+ # Example usage: python train.py --data VisDrone.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── VisDrone ← downloads here (2.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: pedestrian
19
+ 1: people
20
+ 2: bicycle
21
+ 3: car
22
+ 4: van
23
+ 5: truck
24
+ 6: tricycle
25
+ 7: awning-tricycle
26
+ 8: bus
27
+ 9: motor
28
+
29
+
30
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
31
+ download: |
32
+ from utils.general import download, os, Path
33
+
34
+ def visdrone2yolo(dir):
35
+ from PIL import Image
36
+ from tqdm import tqdm
37
+
38
+ def convert_box(size, box):
39
+ # Convert VisDrone box to YOLO xywh box
40
+ dw = 1. / size[0]
41
+ dh = 1. / size[1]
42
+ return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
43
+
44
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
45
+ pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
46
+ for f in pbar:
47
+ img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
48
+ lines = []
49
+ with open(f, 'r') as file: # read annotation.txt
50
+ for row in [x.split(',') for x in file.read().strip().splitlines()]:
51
+ if row[4] == '0': # VisDrone 'ignored regions' class 0
52
+ continue
53
+ cls = int(row[5]) - 1
54
+ box = convert_box(img_size, tuple(map(int, row[:4])))
55
+ lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
56
+ with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
57
+ fl.writelines(lines) # write label.txt
58
+
59
+
60
+ # Download
61
+ dir = Path(yaml['path']) # dataset root dir
62
+ urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
63
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
64
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
65
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
66
+ download(urls, dir=dir, curl=True, threads=4)
67
+
68
+ # Convert
69
+ for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
70
+ visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
data/coco.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # COCO 2017 dataset http://cocodataset.org by Microsoft
3
+ # Example usage: python train.py --data coco.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── coco ← downloads here (20.1 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: |
102
+ from utils.general import download, Path
103
+
104
+
105
+ # Download labels
106
+ segments = False # segment or box labels
107
+ dir = Path(yaml['path']) # dataset root dir
108
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
109
+ urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
110
+ download(urls, dir=dir.parent)
111
+
112
+ # Download data
113
+ urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
114
+ 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
115
+ 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
116
+ download(urls, dir=dir / 'images', threads=3)
data/coco128-seg.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: python train.py --data coco128.yaml
4
+ # parent
5
+ # β”œβ”€β”€ yolov5
6
+ # └── datasets
7
+ # └── coco128-seg ← downloads here (7 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco128-seg # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco128-seg.zip
data/coco128.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ path: ./data/train_data/images # dataset root dir
2
+ train: train # train images (relative to 'path') 128 images
3
+ val: val # val images (relative to 'path') 128 images
4
+
5
+ # Classes
6
+ names:
7
+ 0: bee
data/custom_data.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ path: ./data/train_data/images # dataset root dir
2
+ train: train # train images (relative to 'path') 128 images
3
+ val: val # val images (relative to 'path') 128 images
4
+
5
+ # Classes
6
+ names:
7
+ 0: bee
data/hyps/hyp.Objects365.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for Objects365 training
3
+ # python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.00258
7
+ lrf: 0.17
8
+ momentum: 0.779
9
+ weight_decay: 0.00058
10
+ warmup_epochs: 1.33
11
+ warmup_momentum: 0.86
12
+ warmup_bias_lr: 0.0711
13
+ box: 0.0539
14
+ cls: 0.299
15
+ cls_pw: 0.825
16
+ obj: 0.632
17
+ obj_pw: 1.0
18
+ iou_t: 0.2
19
+ anchor_t: 3.44
20
+ anchors: 3.2
21
+ fl_gamma: 0.0
22
+ hsv_h: 0.0188
23
+ hsv_s: 0.704
24
+ hsv_v: 0.36
25
+ degrees: 0.0
26
+ translate: 0.0902
27
+ scale: 0.491
28
+ shear: 0.0
29
+ perspective: 0.0
30
+ flipud: 0.0
31
+ fliplr: 0.5
32
+ mosaic: 1.0
33
+ mixup: 0.0
34
+ copy_paste: 0.0
data/hyps/hyp.VOC.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for VOC training
3
+ # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ # YOLOv5 Hyperparameter Evolution Results
7
+ # Best generation: 467
8
+ # Last generation: 996
9
+ # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
10
+ # 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
11
+
12
+ lr0: 0.00334
13
+ lrf: 0.15135
14
+ momentum: 0.74832
15
+ weight_decay: 0.00025
16
+ warmup_epochs: 3.3835
17
+ warmup_momentum: 0.59462
18
+ warmup_bias_lr: 0.18657
19
+ box: 0.02
20
+ cls: 0.21638
21
+ cls_pw: 0.5
22
+ obj: 0.51728
23
+ obj_pw: 0.67198
24
+ iou_t: 0.2
25
+ anchor_t: 3.3744
26
+ fl_gamma: 0.0
27
+ hsv_h: 0.01041
28
+ hsv_s: 0.54703
29
+ hsv_v: 0.27739
30
+ degrees: 0.0
31
+ translate: 0.04591
32
+ scale: 0.75544
33
+ shear: 0.0
34
+ perspective: 0.0
35
+ flipud: 0.0
36
+ fliplr: 0.5
37
+ mosaic: 0.85834
38
+ mixup: 0.04266
39
+ copy_paste: 0.0
40
+ anchors: 3.412
data/hyps/hyp.scratch-high.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for high-augmentation COCO training from scratch
3
+ # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.9 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.1 # image mixup (probability)
34
+ copy_paste: 0.1 # segment copy-paste (probability)
data/hyps/hyp.scratch-low.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for low-augmentation COCO training from scratch
3
+ # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.5 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 1.0 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.5 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.0 # image mixup (probability)
34
+ copy_paste: 0.0 # segment copy-paste (probability)
data/hyps/hyp.scratch-med.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for medium-augmentation COCO training from scratch
3
+ # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.9 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.1 # image mixup (probability)
34
+ copy_paste: 0.0 # segment copy-paste (probability)
data/scripts/download_weights.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
3
+ # Download latest models from https://github.com/ultralytics/yolov5/releases
4
+ # Example usage: bash data/scripts/download_weights.sh
5
+ # parent
6
+ # └── yolov5
7
+ # β”œβ”€β”€ yolov5s.pt ← downloads here
8
+ # β”œβ”€β”€ yolov5m.pt
9
+ # └── ...
10
+
11
+ python - <<EOF
12
+ from utils.downloads import attempt_download
13
+
14
+ p5 = ['n', 's', 'm', 'l', 'x'] # P5 models
15
+ p6 = [f'{x}6' for x in p5] # P6 models
16
+ cls = [f'{x}-cls' for x in p5] # classification models
17
+
18
+ for x in p5 + p6 + cls:
19
+ attempt_download(f'weights/yolov5{x}.pt')
20
+
21
+ EOF
data/scripts/get_coco.sh ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
3
+ # Download COCO 2017 dataset http://cocodataset.org
4
+ # Example usage: bash data/scripts/get_coco.sh
5
+ # parent
6
+ # β”œβ”€β”€ yolov5
7
+ # └── datasets
8
+ # └── coco ← downloads here
9
+
10
+ # Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
11
+ if [ "$#" -gt 0 ]; then
12
+ for opt in "$@"; do
13
+ case "${opt}" in
14
+ --train) train=true ;;
15
+ --val) val=true ;;
16
+ --test) test=true ;;
17
+ --segments) segments=true ;;
18
+ esac
19
+ done
20
+ else
21
+ train=true
22
+ val=true
23
+ test=false
24
+ segments=false
25
+ fi
26
+
27
+ # Download/unzip labels
28
+ d='../datasets' # unzip directory
29
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
30
+ if [ "$segments" == "true" ]; then
31
+ f='coco2017labels-segments.zip' # 168 MB
32
+ else
33
+ f='coco2017labels.zip' # 168 MB
34
+ fi
35
+ echo 'Downloading' $url$f ' ...'
36
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
37
+
38
+ # Download/unzip images
39
+ d='../datasets/coco/images' # unzip directory
40
+ url=http://images.cocodataset.org/zips/
41
+ if [ "$train" == "true" ]; then
42
+ f='train2017.zip' # 19G, 118k images
43
+ echo 'Downloading' $url$f '...'
44
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
45
+ fi
46
+ if [ "$val" == "true" ]; then
47
+ f='val2017.zip' # 1G, 5k images
48
+ echo 'Downloading' $url$f '...'
49
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
50
+ fi
51
+ if [ "$test" == "true" ]; then
52
+ f='test2017.zip' # 7G, 41k images (optional)
53
+ echo 'Downloading' $url$f '...'
54
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
55
+ fi
56
+ wait # finish background tasks
data/scripts/get_coco128.sh ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
3
+ # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
4
+ # Example usage: bash data/scripts/get_coco128.sh
5
+ # parent
6
+ # β”œβ”€β”€ yolov5
7
+ # └── datasets
8
+ # └── coco128 ← downloads here
9
+
10
+ # Download/unzip images and labels
11
+ d='../datasets' # unzip directory
12
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
13
+ f='coco128.zip' # or 'coco128-segments.zip', 68 MB
14
+ echo 'Downloading' $url$f ' ...'
15
+ curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
16
+
17
+ wait # finish background tasks
data/scripts/get_imagenet.sh ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
3
+ # Download ILSVRC2012 ImageNet dataset https://image-net.org
4
+ # Example usage: bash data/scripts/get_imagenet.sh
5
+ # parent
6
+ # β”œβ”€β”€ yolov5
7
+ # └── datasets
8
+ # └── imagenet ← downloads here
9
+
10
+ # Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
11
+ if [ "$#" -gt 0 ]; then
12
+ for opt in "$@"; do
13
+ case "${opt}" in
14
+ --train) train=true ;;
15
+ --val) val=true ;;
16
+ esac
17
+ done
18
+ else
19
+ train=true
20
+ val=true
21
+ fi
22
+
23
+ # Make dir
24
+ d='../datasets/imagenet' # unzip directory
25
+ mkdir -p $d && cd $d
26
+
27
+ # Download/unzip train
28
+ if [ "$train" == "true" ]; then
29
+ wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
30
+ mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
31
+ tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
32
+ find . -name "*.tar" | while read NAME; do
33
+ mkdir -p "${NAME%.tar}"
34
+ tar -xf "${NAME}" -C "${NAME%.tar}"
35
+ rm -f "${NAME}"
36
+ done
37
+ cd ..
38
+ fi
39
+
40
+ # Download/unzip val
41
+ if [ "$val" == "true" ]; then
42
+ wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
43
+ mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
44
+ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
45
+ fi
46
+
47
+ # Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
48
+ # rm train/n04266014/n04266014_10835.JPEG
49
+
50
+ # TFRecords (optional)
51
+ # wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
data/xView.yaml ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
3
+ # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
4
+ # Example usage: python train.py --data xView.yaml
5
+ # parent
6
+ # β”œβ”€β”€ yolov5
7
+ # └── datasets
8
+ # └── xView ← downloads here (20.7 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/xView # dataset root dir
13
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
14
+ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
15
+
16
+ # Classes
17
+ names:
18
+ 0: Fixed-wing Aircraft
19
+ 1: Small Aircraft
20
+ 2: Cargo Plane
21
+ 3: Helicopter
22
+ 4: Passenger Vehicle
23
+ 5: Small Car
24
+ 6: Bus
25
+ 7: Pickup Truck
26
+ 8: Utility Truck
27
+ 9: Truck
28
+ 10: Cargo Truck
29
+ 11: Truck w/Box
30
+ 12: Truck Tractor
31
+ 13: Trailer
32
+ 14: Truck w/Flatbed
33
+ 15: Truck w/Liquid
34
+ 16: Crane Truck
35
+ 17: Railway Vehicle
36
+ 18: Passenger Car
37
+ 19: Cargo Car
38
+ 20: Flat Car
39
+ 21: Tank car
40
+ 22: Locomotive
41
+ 23: Maritime Vessel
42
+ 24: Motorboat
43
+ 25: Sailboat
44
+ 26: Tugboat
45
+ 27: Barge
46
+ 28: Fishing Vessel
47
+ 29: Ferry
48
+ 30: Yacht
49
+ 31: Container Ship
50
+ 32: Oil Tanker
51
+ 33: Engineering Vehicle
52
+ 34: Tower crane
53
+ 35: Container Crane
54
+ 36: Reach Stacker
55
+ 37: Straddle Carrier
56
+ 38: Mobile Crane
57
+ 39: Dump Truck
58
+ 40: Haul Truck
59
+ 41: Scraper/Tractor
60
+ 42: Front loader/Bulldozer
61
+ 43: Excavator
62
+ 44: Cement Mixer
63
+ 45: Ground Grader
64
+ 46: Hut/Tent
65
+ 47: Shed
66
+ 48: Building
67
+ 49: Aircraft Hangar
68
+ 50: Damaged Building
69
+ 51: Facility
70
+ 52: Construction Site
71
+ 53: Vehicle Lot
72
+ 54: Helipad
73
+ 55: Storage Tank
74
+ 56: Shipping container lot
75
+ 57: Shipping Container
76
+ 58: Pylon
77
+ 59: Tower
78
+
79
+
80
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
81
+ download: |
82
+ import json
83
+ import os
84
+ from pathlib import Path
85
+
86
+ import numpy as np
87
+ from PIL import Image
88
+ from tqdm import tqdm
89
+
90
+ from utils.dataloaders import autosplit
91
+ from utils.general import download, xyxy2xywhn
92
+
93
+
94
+ def convert_labels(fname=Path('xView/xView_train.geojson')):
95
+ # Convert xView geoJSON labels to YOLO format
96
+ path = fname.parent
97
+ with open(fname) as f:
98
+ print(f'Loading {fname}...')
99
+ data = json.load(f)
100
+
101
+ # Make dirs
102
+ labels = Path(path / 'labels' / 'train')
103
+ os.system(f'rm -rf {labels}')
104
+ labels.mkdir(parents=True, exist_ok=True)
105
+
106
+ # xView classes 11-94 to 0-59
107
+ xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
108
+ 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
109
+ 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
110
+ 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
111
+
112
+ shapes = {}
113
+ for feature in tqdm(data['features'], desc=f'Converting {fname}'):
114
+ p = feature['properties']
115
+ if p['bounds_imcoords']:
116
+ id = p['image_id']
117
+ file = path / 'train_images' / id
118
+ if file.exists(): # 1395.tif missing
119
+ try:
120
+ box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
121
+ assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
122
+ cls = p['type_id']
123
+ cls = xview_class2index[int(cls)] # xView class to 0-60
124
+ assert 59 >= cls >= 0, f'incorrect class index {cls}'
125
+
126
+ # Write YOLO label
127
+ if id not in shapes:
128
+ shapes[id] = Image.open(file).size
129
+ box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
130
+ with open((labels / id).with_suffix('.txt'), 'a') as f:
131
+ f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
132
+ except Exception as e:
133
+ print(f'WARNING: skipping one label for {file}: {e}')
134
+
135
+
136
+ # Download manually from https://challenge.xviewdataset.org
137
+ dir = Path(yaml['path']) # dataset root dir
138
+ # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
139
+ # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
140
+ # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
141
+ # download(urls, dir=dir, delete=False)
142
+
143
+ # Convert labels
144
+ convert_labels(dir / 'xView_train.geojson')
145
+
146
+ # Move images
147
+ images = Path(dir / 'images')
148
+ images.mkdir(parents=True, exist_ok=True)
149
+ Path(dir / 'train_images').rename(dir / 'images' / 'train')
150
+ Path(dir / 'val_images').rename(dir / 'images' / 'val')
151
+
152
+ # Split
153
+ autosplit(dir / 'images' / 'train')
export.py ADDED
@@ -0,0 +1,617 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+ PaddlePaddle | `paddle` | yolov5s_paddle_model/
19
+
20
+ Requirements:
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
22
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
23
+
24
+ Usage:
25
+ $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
26
+
27
+ Inference:
28
+ $ python sample_solution.py --weights yolov5s.pt # PyTorch
29
+ yolov5s.torchscript # TorchScript
30
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
31
+ yolov5s_openvino_model # OpenVINO
32
+ yolov5s.engine # TensorRT
33
+ yolov5s.mlmodel # CoreML (macOS-only)
34
+ yolov5s_saved_model # TensorFlow SavedModel
35
+ yolov5s.pb # TensorFlow GraphDef
36
+ yolov5s.tflite # TensorFlow Lite
37
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
38
+ yolov5s_paddle_model # PaddlePaddle
39
+
40
+ TensorFlow.js:
41
+ $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
42
+ $ npm install
43
+ $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
44
+ $ npm start
45
+ """
46
+
47
+ import argparse
48
+ import json
49
+ import os
50
+ import platform
51
+ import re
52
+ import subprocess
53
+ import sys
54
+ import time
55
+ import warnings
56
+ from pathlib import Path
57
+
58
+ import pandas as pd
59
+ import torch
60
+ from torch.utils.mobile_optimizer import optimize_for_mobile
61
+
62
+ FILE = Path(__file__).resolve()
63
+ ROOT = FILE.parents[0] # YOLOv5 root directory
64
+ if str(ROOT) not in sys.path:
65
+ sys.path.append(str(ROOT)) # add ROOT to PATH
66
+ if platform.system() != 'Windows':
67
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
68
+
69
+ from models.experimental import attempt_load
70
+ from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
71
+ from utils.dataloaders import LoadImages
72
+ from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
73
+ check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
74
+ from utils.torch_utils import select_device, smart_inference_mode
75
+
76
+ MACOS = platform.system() == 'Darwin' # macOS environment
77
+
78
+
79
+ def export_formats():
80
+ # YOLOv5 export formats
81
+ x = [
82
+ ['PyTorch', '-', '.pt', True, True],
83
+ ['TorchScript', 'torchscript', '.torchscript', True, True],
84
+ ['ONNX', 'onnx', '.onnx', True, True],
85
+ ['OpenVINO', 'openvino', '_openvino_model', True, False],
86
+ ['TensorRT', 'engine', '.engine', False, True],
87
+ ['CoreML', 'coreml', '.mlmodel', True, False],
88
+ ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
89
+ ['TensorFlow GraphDef', 'pb', '.pb', True, True],
90
+ ['TensorFlow Lite', 'tflite', '.tflite', True, False],
91
+ ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
92
+ ['TensorFlow.js', 'tfjs', '_web_model', False, False],
93
+ ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
94
+ return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
95
+
96
+
97
+ def try_export(inner_func):
98
+ # YOLOv5 export decorator, i..e @try_export
99
+ inner_args = get_default_args(inner_func)
100
+
101
+ def outer_func(*args, **kwargs):
102
+ prefix = inner_args['prefix']
103
+ try:
104
+ with Profile() as dt:
105
+ f, model = inner_func(*args, **kwargs)
106
+ LOGGER.info(f'{prefix} export success βœ… {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
107
+ return f, model
108
+ except Exception as e:
109
+ LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
110
+ return None, None
111
+
112
+ return outer_func
113
+
114
+
115
+ @try_export
116
+ def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
117
+ # YOLOv5 TorchScript model export
118
+ LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
119
+ f = file.with_suffix('.torchscript')
120
+
121
+ ts = torch.jit.trace(model, im, strict=False)
122
+ d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
123
+ extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
124
+ if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
125
+ optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
126
+ else:
127
+ ts.save(str(f), _extra_files=extra_files)
128
+ return f, None
129
+
130
+
131
+ @try_export
132
+ def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
133
+ # YOLOv5 ONNX export
134
+ check_requirements('onnx')
135
+ import onnx
136
+
137
+ LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
138
+ f = file.with_suffix('.onnx')
139
+
140
+ output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
141
+ if dynamic:
142
+ dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
143
+ if isinstance(model, SegmentationModel):
144
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
145
+ dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
146
+ elif isinstance(model, DetectionModel):
147
+ dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
148
+
149
+ torch.onnx.export(
150
+ model.cpu() if dynamic else model, # --dynamic only compatible with cpu
151
+ im.cpu() if dynamic else im,
152
+ f,
153
+ verbose=False,
154
+ opset_version=opset,
155
+ do_constant_folding=True,
156
+ input_names=['images'],
157
+ output_names=output_names,
158
+ dynamic_axes=dynamic or None)
159
+
160
+ # Checks
161
+ model_onnx = onnx.load(f) # load onnx model
162
+ onnx.checker.check_model(model_onnx) # check onnx model
163
+
164
+ # Metadata
165
+ d = {'stride': int(max(model.stride)), 'names': model.names}
166
+ for k, v in d.items():
167
+ meta = model_onnx.metadata_props.add()
168
+ meta.key, meta.value = k, str(v)
169
+ onnx.save(model_onnx, f)
170
+
171
+ # Simplify
172
+ if simplify:
173
+ try:
174
+ cuda = torch.cuda.is_available()
175
+ check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
176
+ import onnxsim
177
+
178
+ LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
179
+ model_onnx, check = onnxsim.simplify(model_onnx)
180
+ assert check, 'assert check failed'
181
+ onnx.save(model_onnx, f)
182
+ except Exception as e:
183
+ LOGGER.info(f'{prefix} simplifier failure: {e}')
184
+ return f, model_onnx
185
+
186
+
187
+ @try_export
188
+ def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
189
+ # YOLOv5 OpenVINO export
190
+ check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
191
+ import openvino.inference_engine as ie
192
+
193
+ LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
194
+ f = str(file).replace('.pt', f'_openvino_model{os.sep}')
195
+
196
+ cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
197
+ subprocess.run(cmd.split(), check=True, env=os.environ) # export
198
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
199
+ return f, None
200
+
201
+
202
+ @try_export
203
+ def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
204
+ # YOLOv5 Paddle export
205
+ check_requirements(('paddlepaddle', 'x2paddle'))
206
+ import x2paddle
207
+ from x2paddle.convert import pytorch2paddle
208
+
209
+ LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
210
+ f = str(file).replace('.pt', f'_paddle_model{os.sep}')
211
+
212
+ pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
213
+ yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
214
+ return f, None
215
+
216
+
217
+ @try_export
218
+ def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
219
+ # YOLOv5 CoreML export
220
+ check_requirements('coremltools')
221
+ import coremltools as ct
222
+
223
+ LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
224
+ f = file.with_suffix('.mlmodel')
225
+
226
+ ts = torch.jit.trace(model, im, strict=False) # TorchScript model
227
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
228
+ bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
229
+ if bits < 32:
230
+ if MACOS: # quantization only supported on macOS
231
+ with warnings.catch_warnings():
232
+ warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
233
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
234
+ else:
235
+ print(f'{prefix} quantization only supported on macOS, skipping...')
236
+ ct_model.save(f)
237
+ return f, ct_model
238
+
239
+
240
+ @try_export
241
+ def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
242
+ # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
243
+ assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
244
+ try:
245
+ import tensorrt as trt
246
+ except Exception:
247
+ if platform.system() == 'Linux':
248
+ check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
249
+ import tensorrt as trt
250
+
251
+ if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
252
+ grid = model.model[-1].anchor_grid
253
+ model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
254
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
255
+ model.model[-1].anchor_grid = grid
256
+ else: # TensorRT >= 8
257
+ check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
258
+ export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
259
+ onnx = file.with_suffix('.onnx')
260
+
261
+ LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
262
+ assert onnx.exists(), f'failed to export ONNX file: {onnx}'
263
+ f = file.with_suffix('.engine') # TensorRT engine file
264
+ logger = trt.Logger(trt.Logger.INFO)
265
+ if verbose:
266
+ logger.min_severity = trt.Logger.Severity.VERBOSE
267
+
268
+ builder = trt.Builder(logger)
269
+ config = builder.create_builder_config()
270
+ config.max_workspace_size = workspace * 1 << 30
271
+ # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
272
+
273
+ flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
274
+ network = builder.create_network(flag)
275
+ parser = trt.OnnxParser(network, logger)
276
+ if not parser.parse_from_file(str(onnx)):
277
+ raise RuntimeError(f'failed to load ONNX file: {onnx}')
278
+
279
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
280
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
281
+ for inp in inputs:
282
+ LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
283
+ for out in outputs:
284
+ LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
285
+
286
+ if dynamic:
287
+ if im.shape[0] <= 1:
288
+ LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
289
+ profile = builder.create_optimization_profile()
290
+ for inp in inputs:
291
+ profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
292
+ config.add_optimization_profile(profile)
293
+
294
+ LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
295
+ if builder.platform_has_fast_fp16 and half:
296
+ config.set_flag(trt.BuilderFlag.FP16)
297
+ with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
298
+ t.write(engine.serialize())
299
+ return f, None
300
+
301
+
302
+ @try_export
303
+ def export_saved_model(model,
304
+ im,
305
+ file,
306
+ dynamic,
307
+ tf_nms=False,
308
+ agnostic_nms=False,
309
+ topk_per_class=100,
310
+ topk_all=100,
311
+ iou_thres=0.45,
312
+ conf_thres=0.25,
313
+ keras=False,
314
+ prefix=colorstr('TensorFlow SavedModel:')):
315
+ # YOLOv5 TensorFlow SavedModel export
316
+ try:
317
+ import tensorflow as tf
318
+ except Exception:
319
+ check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
320
+ import tensorflow as tf
321
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
322
+
323
+ from models.tf import TFModel
324
+
325
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
326
+ f = str(file).replace('.pt', '_saved_model')
327
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
328
+
329
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
330
+ im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
331
+ _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
332
+ inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
333
+ outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
334
+ keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
335
+ keras_model.trainable = False
336
+ keras_model.summary()
337
+ if keras:
338
+ keras_model.save(f, save_format='tf')
339
+ else:
340
+ spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
341
+ m = tf.function(lambda x: keras_model(x)) # full model
342
+ m = m.get_concrete_function(spec)
343
+ frozen_func = convert_variables_to_constants_v2(m)
344
+ tfm = tf.Module()
345
+ tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
346
+ tfm.__call__(im)
347
+ tf.saved_model.save(tfm,
348
+ f,
349
+ options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
350
+ tf.__version__, '2.6') else tf.saved_model.SaveOptions())
351
+ return f, keras_model
352
+
353
+
354
+ @try_export
355
+ def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
356
+ # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
357
+ import tensorflow as tf
358
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
359
+
360
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
361
+ f = file.with_suffix('.pb')
362
+
363
+ m = tf.function(lambda x: keras_model(x)) # full model
364
+ m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
365
+ frozen_func = convert_variables_to_constants_v2(m)
366
+ frozen_func.graph.as_graph_def()
367
+ tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
368
+ return f, None
369
+
370
+
371
+ @try_export
372
+ def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
373
+ # YOLOv5 TensorFlow Lite export
374
+ import tensorflow as tf
375
+
376
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
377
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
378
+ f = str(file).replace('.pt', '-fp16.tflite')
379
+
380
+ converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
381
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
382
+ converter.target_spec.supported_types = [tf.float16]
383
+ converter.optimizations = [tf.lite.Optimize.DEFAULT]
384
+ if int8:
385
+ from models.tf import representative_dataset_gen
386
+ dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
387
+ converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
388
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
389
+ converter.target_spec.supported_types = []
390
+ converter.inference_input_type = tf.uint8 # or tf.int8
391
+ converter.inference_output_type = tf.uint8 # or tf.int8
392
+ converter.experimental_new_quantizer = True
393
+ f = str(file).replace('.pt', '-int8.tflite')
394
+ if nms or agnostic_nms:
395
+ converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
396
+
397
+ tflite_model = converter.convert()
398
+ open(f, "wb").write(tflite_model)
399
+ return f, None
400
+
401
+
402
+ @try_export
403
+ def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
404
+ # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
405
+ cmd = 'edgetpu_compiler --version'
406
+ help_url = 'https://coral.ai/docs/edgetpu/compiler/'
407
+ assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
408
+ if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
409
+ LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
410
+ sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
411
+ for c in (
412
+ 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
413
+ 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
414
+ 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
415
+ subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
416
+ ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
417
+
418
+ LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
419
+ f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
420
+ f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
421
+
422
+ cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
423
+ subprocess.run(cmd.split(), check=True)
424
+ return f, None
425
+
426
+
427
+ @try_export
428
+ def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
429
+ # YOLOv5 TensorFlow.js export
430
+ check_requirements('tensorflowjs')
431
+ import tensorflowjs as tfjs
432
+
433
+ LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
434
+ f = str(file).replace('.pt', '_web_model') # js dir
435
+ f_pb = file.with_suffix('.pb') # *.pb path
436
+ f_json = f'{f}/model.json' # *.json path
437
+
438
+ cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
439
+ f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
440
+ subprocess.run(cmd.split())
441
+
442
+ json = Path(f_json).read_text()
443
+ with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
444
+ subst = re.sub(
445
+ r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
446
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
447
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
448
+ r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
449
+ r'"Identity_1": {"name": "Identity_1"}, '
450
+ r'"Identity_2": {"name": "Identity_2"}, '
451
+ r'"Identity_3": {"name": "Identity_3"}}}', json)
452
+ j.write(subst)
453
+ return f, None
454
+
455
+
456
+ @smart_inference_mode()
457
+ def run(
458
+ data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
459
+ weights=ROOT / 'yolov5s.pt', # weights path
460
+ imgsz=(640, 640), # image (height, width)
461
+ batch_size=1, # batch size
462
+ device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
463
+ include=('torchscript', 'onnx'), # include formats
464
+ half=False, # FP16 half-precision export
465
+ inplace=False, # set YOLOv5 Detect() inplace=True
466
+ keras=False, # use Keras
467
+ optimize=False, # TorchScript: optimize for mobile
468
+ int8=False, # CoreML/TF INT8 quantization
469
+ dynamic=False, # ONNX/TF/TensorRT: dynamic axes
470
+ simplify=False, # ONNX: simplify model
471
+ opset=12, # ONNX: opset version
472
+ verbose=False, # TensorRT: verbose log
473
+ workspace=4, # TensorRT: workspace size (GB)
474
+ nms=False, # TF: add NMS to model
475
+ agnostic_nms=False, # TF: add agnostic NMS to model
476
+ topk_per_class=100, # TF.js NMS: topk per class to keep
477
+ topk_all=100, # TF.js NMS: topk for all classes to keep
478
+ iou_thres=0.45, # TF.js NMS: IoU threshold
479
+ conf_thres=0.25, # TF.js NMS: confidence threshold
480
+ ):
481
+ t = time.time()
482
+ include = [x.lower() for x in include] # to lowercase
483
+ fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
484
+ flags = [x in include for x in fmts]
485
+ assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
486
+ jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
487
+ file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
488
+
489
+ # Load PyTorch model
490
+ device = select_device(device)
491
+ if half:
492
+ assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
493
+ assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
494
+ model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
495
+
496
+ # Checks
497
+ imgsz *= 2 if len(imgsz) == 1 else 1 # expand
498
+ if optimize:
499
+ assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
500
+
501
+ # Input
502
+ gs = int(max(model.stride)) # grid size (max stride)
503
+ imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
504
+ im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
505
+
506
+ # Update model
507
+ model.eval()
508
+ for k, m in model.named_modules():
509
+ if isinstance(m, Detect):
510
+ m.inplace = inplace
511
+ m.dynamic = dynamic
512
+ m.export = True
513
+
514
+ for _ in range(2):
515
+ y = model(im) # dry runs
516
+ if half and not coreml:
517
+ im, model = im.half(), model.half() # to FP16
518
+ shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
519
+ metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
520
+ LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
521
+
522
+ # Exports
523
+ f = [''] * len(fmts) # exported filenames
524
+ warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
525
+ if jit: # TorchScript
526
+ f[0], _ = export_torchscript(model, im, file, optimize)
527
+ if engine: # TensorRT required before ONNX
528
+ f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
529
+ if onnx or xml: # OpenVINO requires ONNX
530
+ f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
531
+ if xml: # OpenVINO
532
+ f[3], _ = export_openvino(file, metadata, half)
533
+ if coreml: # CoreML
534
+ f[4], _ = export_coreml(model, im, file, int8, half)
535
+ if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
536
+ assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
537
+ assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
538
+ f[5], s_model = export_saved_model(model.cpu(),
539
+ im,
540
+ file,
541
+ dynamic,
542
+ tf_nms=nms or agnostic_nms or tfjs,
543
+ agnostic_nms=agnostic_nms or tfjs,
544
+ topk_per_class=topk_per_class,
545
+ topk_all=topk_all,
546
+ iou_thres=iou_thres,
547
+ conf_thres=conf_thres,
548
+ keras=keras)
549
+ if pb or tfjs: # pb prerequisite to tfjs
550
+ f[6], _ = export_pb(s_model, file)
551
+ if tflite or edgetpu:
552
+ f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
553
+ if edgetpu:
554
+ f[8], _ = export_edgetpu(file)
555
+ if tfjs:
556
+ f[9], _ = export_tfjs(file)
557
+ if paddle: # PaddlePaddle
558
+ f[10], _ = export_paddle(model, im, file, metadata)
559
+
560
+ # Finish
561
+ f = [str(x) for x in f if x] # filter out '' and None
562
+ if any(f):
563
+ cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
564
+ dir = Path('segment' if seg else 'classify' if cls else '')
565
+ h = '--half' if half else '' # --half FP16 inference arg
566
+ s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
567
+ "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
568
+ LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
569
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
570
+ f"\nDetect: python {dir / ('sample_solution.py' if det else 'predict.py')} --weights {f[-1]} {h}"
571
+ f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
572
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
573
+ f"\nVisualize: https://netron.app")
574
+ return f # return list of exported files/dirs
575
+
576
+
577
+ def parse_opt():
578
+ parser = argparse.ArgumentParser()
579
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
580
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
581
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
582
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
583
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
584
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
585
+ parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
586
+ parser.add_argument('--keras', action='store_true', help='TF: use Keras')
587
+ parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
588
+ parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
589
+ parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
590
+ parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
591
+ parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
592
+ parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
593
+ parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
594
+ parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
595
+ parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
596
+ parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
597
+ parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
598
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
599
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
600
+ parser.add_argument(
601
+ '--include',
602
+ nargs='+',
603
+ default=['torchscript'],
604
+ help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
605
+ opt = parser.parse_args()
606
+ print_args(vars(opt))
607
+ return opt
608
+
609
+
610
+ def main(opt):
611
+ for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
612
+ run(**vars(opt))
613
+
614
+
615
+ if __name__ == "__main__":
616
+ opt = parse_opt()
617
+ main(opt)
hubconf.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
4
+
5
+ Usage:
6
+ import torch
7
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
8
+ model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
9
+ model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
10
+ model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
11
+ """
12
+
13
+ import torch
14
+
15
+
16
+ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
17
+ """Creates or loads a YOLOv5 model
18
+
19
+ Arguments:
20
+ name (str): model name 'yolov5s' or path 'path/to/best.pt'
21
+ pretrained (bool): load pretrained weights into the model
22
+ channels (int): number of input channels
23
+ classes (int): number of model classes
24
+ autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
25
+ verbose (bool): print all information to screen
26
+ device (str, torch.device, None): device to use for model parameters
27
+
28
+ Returns:
29
+ YOLOv5 model
30
+ """
31
+ from pathlib import Path
32
+
33
+ from models.common import AutoShape, DetectMultiBackend
34
+ from models.experimental import attempt_load
35
+ from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
36
+ from utils.downloads import attempt_download
37
+ from utils.general import LOGGER, check_requirements, intersect_dicts, logging
38
+ from utils.torch_utils import select_device
39
+
40
+ if not verbose:
41
+ LOGGER.setLevel(logging.WARNING)
42
+ check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
43
+ name = Path(name)
44
+ path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
45
+ try:
46
+ device = select_device(device)
47
+ if pretrained and channels == 3 and classes == 80:
48
+ try:
49
+ model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
50
+ if autoshape:
51
+ if model.pt and isinstance(model.model, ClassificationModel):
52
+ LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
53
+ 'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
54
+ elif model.pt and isinstance(model.model, SegmentationModel):
55
+ LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
56
+ 'You will not be able to run inference with this model.')
57
+ else:
58
+ model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
59
+ except Exception:
60
+ model = attempt_load(path, device=device, fuse=False) # arbitrary model
61
+ else:
62
+ cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
63
+ model = DetectionModel(cfg, channels, classes) # create model
64
+ if pretrained:
65
+ ckpt = torch.load(attempt_download(path), map_location=device) # load
66
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
67
+ csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
68
+ model.load_state_dict(csd, strict=False) # load
69
+ if len(ckpt['model'].names) == classes:
70
+ model.names = ckpt['model'].names # set class names attribute
71
+ if not verbose:
72
+ LOGGER.setLevel(logging.INFO) # reset to default
73
+ return model.to(device)
74
+
75
+ except Exception as e:
76
+ help_url = 'https://github.com/ultralytics/yolov5/issues/36'
77
+ s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
78
+ raise Exception(s) from e
79
+
80
+
81
+ def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
82
+ # YOLOv5 custom or local model
83
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
84
+
85
+
86
+ def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
87
+ # YOLOv5-nano model https://github.com/ultralytics/yolov5
88
+ return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
89
+
90
+
91
+ def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
92
+ # YOLOv5-small model https://github.com/ultralytics/yolov5
93
+ return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
94
+
95
+
96
+ def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
97
+ # YOLOv5-medium model https://github.com/ultralytics/yolov5
98
+ return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
99
+
100
+
101
+ def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
102
+ # YOLOv5-large model https://github.com/ultralytics/yolov5
103
+ return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
104
+
105
+
106
+ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
107
+ # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
108
+ return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
109
+
110
+
111
+ def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
112
+ # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
113
+ return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
114
+
115
+
116
+ def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
117
+ # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
118
+ return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
119
+
120
+
121
+ def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
122
+ # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
123
+ return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
124
+
125
+
126
+ def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
127
+ # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
128
+ return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
129
+
130
+
131
+ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
132
+ # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
133
+ return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
134
+
135
+
136
+ if __name__ == '__main__':
137
+ import argparse
138
+ from pathlib import Path
139
+
140
+ import numpy as np
141
+ from PIL import Image
142
+
143
+ from utils.general import cv2, print_args
144
+
145
+ # Argparser
146
+ parser = argparse.ArgumentParser()
147
+ parser.add_argument('--model', type=str, default='yolov5s', help='model name')
148
+ opt = parser.parse_args()
149
+ print_args(vars(opt))
150
+
151
+ # Model
152
+ model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
153
+ # model = custom(path='path/to/model.pt') # custom
154
+
155
+ # Images
156
+ imgs = [
157
+ 'data/images/zidane.jpg', # filename
158
+ Path('data/images/zidane.jpg'), # Path
159
+ 'https://ultralytics.com/images/zidane.jpg', # URI
160
+ cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
161
+ Image.open('data/images/bus.jpg'), # PIL
162
+ np.zeros((320, 640, 3))] # numpy
163
+
164
+ # Inference
165
+ results = model(imgs, size=320) # batched inference
166
+
167
+ # Results
168
+ results.print()
169
+ results.save()
models/__init__.py ADDED
File without changes
models/common.py ADDED
@@ -0,0 +1,851 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Common modules
4
+ """
5
+
6
+ import json
7
+ import math
8
+ import platform
9
+ import warnings
10
+ from collections import OrderedDict, namedtuple
11
+ from copy import copy
12
+ from pathlib import Path
13
+ from urllib.parse import urlparse
14
+
15
+ import cv2
16
+ import numpy as np
17
+ import pandas as pd
18
+ import requests
19
+ import torch
20
+ import torch.nn as nn
21
+ from IPython.display import display
22
+ from PIL import Image
23
+ from torch.cuda import amp
24
+
25
+ from utils import TryExcept
26
+ from utils.dataloaders import exif_transpose, letterbox
27
+ from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
28
+ increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
29
+ xyxy2xywh, yaml_load)
30
+ from utils.plots import Annotator, colors, save_one_box
31
+ from utils.torch_utils import copy_attr, smart_inference_mode
32
+
33
+
34
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
35
+ # Pad to 'same' shape outputs
36
+ if d > 1:
37
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
38
+ if p is None:
39
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
40
+ return p
41
+
42
+
43
+ class Conv(nn.Module):
44
+ # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
45
+ default_act = nn.SiLU() # default activation
46
+
47
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
48
+ super().__init__()
49
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
50
+ self.bn = nn.BatchNorm2d(c2)
51
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
52
+
53
+ def forward(self, x):
54
+ return self.act(self.bn(self.conv(x)))
55
+
56
+ def forward_fuse(self, x):
57
+ return self.act(self.conv(x))
58
+
59
+
60
+ class DWConv(Conv):
61
+ # Depth-wise convolution
62
+ def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
63
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
64
+
65
+
66
+ class DWConvTranspose2d(nn.ConvTranspose2d):
67
+ # Depth-wise transpose convolution
68
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
69
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
70
+
71
+
72
+ class TransformerLayer(nn.Module):
73
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
74
+ def __init__(self, c, num_heads):
75
+ super().__init__()
76
+ self.q = nn.Linear(c, c, bias=False)
77
+ self.k = nn.Linear(c, c, bias=False)
78
+ self.v = nn.Linear(c, c, bias=False)
79
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
80
+ self.fc1 = nn.Linear(c, c, bias=False)
81
+ self.fc2 = nn.Linear(c, c, bias=False)
82
+
83
+ def forward(self, x):
84
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
85
+ x = self.fc2(self.fc1(x)) + x
86
+ return x
87
+
88
+
89
+ class TransformerBlock(nn.Module):
90
+ # Vision Transformer https://arxiv.org/abs/2010.11929
91
+ def __init__(self, c1, c2, num_heads, num_layers):
92
+ super().__init__()
93
+ self.conv = None
94
+ if c1 != c2:
95
+ self.conv = Conv(c1, c2)
96
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
97
+ self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
98
+ self.c2 = c2
99
+
100
+ def forward(self, x):
101
+ if self.conv is not None:
102
+ x = self.conv(x)
103
+ b, _, w, h = x.shape
104
+ p = x.flatten(2).permute(2, 0, 1)
105
+ return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
106
+
107
+
108
+ class Bottleneck(nn.Module):
109
+ # Standard bottleneck
110
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
111
+ super().__init__()
112
+ c_ = int(c2 * e) # hidden channels
113
+ self.cv1 = Conv(c1, c_, 1, 1)
114
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
115
+ self.add = shortcut and c1 == c2
116
+
117
+ def forward(self, x):
118
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
119
+
120
+
121
+ class BottleneckCSP(nn.Module):
122
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
123
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
124
+ super().__init__()
125
+ c_ = int(c2 * e) # hidden channels
126
+ self.cv1 = Conv(c1, c_, 1, 1)
127
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
128
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
129
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
130
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
131
+ self.act = nn.SiLU()
132
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
133
+
134
+ def forward(self, x):
135
+ y1 = self.cv3(self.m(self.cv1(x)))
136
+ y2 = self.cv2(x)
137
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
138
+
139
+
140
+ class CrossConv(nn.Module):
141
+ # Cross Convolution Downsample
142
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
143
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
144
+ super().__init__()
145
+ c_ = int(c2 * e) # hidden channels
146
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
147
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
148
+ self.add = shortcut and c1 == c2
149
+
150
+ def forward(self, x):
151
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
152
+
153
+
154
+ class C3(nn.Module):
155
+ # CSP Bottleneck with 3 convolutions
156
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
157
+ super().__init__()
158
+ c_ = int(c2 * e) # hidden channels
159
+ self.cv1 = Conv(c1, c_, 1, 1)
160
+ self.cv2 = Conv(c1, c_, 1, 1)
161
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
162
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
163
+
164
+ def forward(self, x):
165
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
166
+
167
+
168
+ class C3x(C3):
169
+ # C3 module with cross-convolutions
170
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
171
+ super().__init__(c1, c2, n, shortcut, g, e)
172
+ c_ = int(c2 * e)
173
+ self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
174
+
175
+
176
+ class C3TR(C3):
177
+ # C3 module with TransformerBlock()
178
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
179
+ super().__init__(c1, c2, n, shortcut, g, e)
180
+ c_ = int(c2 * e)
181
+ self.m = TransformerBlock(c_, c_, 4, n)
182
+
183
+
184
+ class C3SPP(C3):
185
+ # C3 module with SPP()
186
+ def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
187
+ super().__init__(c1, c2, n, shortcut, g, e)
188
+ c_ = int(c2 * e)
189
+ self.m = SPP(c_, c_, k)
190
+
191
+
192
+ class C3Ghost(C3):
193
+ # C3 module with GhostBottleneck()
194
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
195
+ super().__init__(c1, c2, n, shortcut, g, e)
196
+ c_ = int(c2 * e) # hidden channels
197
+ self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
198
+
199
+
200
+ class SPP(nn.Module):
201
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
202
+ def __init__(self, c1, c2, k=(5, 9, 13)):
203
+ super().__init__()
204
+ c_ = c1 // 2 # hidden channels
205
+ self.cv1 = Conv(c1, c_, 1, 1)
206
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
207
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
208
+
209
+ def forward(self, x):
210
+ x = self.cv1(x)
211
+ with warnings.catch_warnings():
212
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
213
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
214
+
215
+
216
+ class SPPF(nn.Module):
217
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
218
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
219
+ super().__init__()
220
+ c_ = c1 // 2 # hidden channels
221
+ self.cv1 = Conv(c1, c_, 1, 1)
222
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
223
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
224
+
225
+ def forward(self, x):
226
+ x = self.cv1(x)
227
+ with warnings.catch_warnings():
228
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
229
+ y1 = self.m(x)
230
+ y2 = self.m(y1)
231
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
232
+
233
+
234
+ class Focus(nn.Module):
235
+ # Focus wh information into c-space
236
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
237
+ super().__init__()
238
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
239
+ # self.contract = Contract(gain=2)
240
+
241
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
242
+ return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
243
+ # return self.conv(self.contract(x))
244
+
245
+
246
+ class GhostConv(nn.Module):
247
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
248
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
249
+ super().__init__()
250
+ c_ = c2 // 2 # hidden channels
251
+ self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
252
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
253
+
254
+ def forward(self, x):
255
+ y = self.cv1(x)
256
+ return torch.cat((y, self.cv2(y)), 1)
257
+
258
+
259
+ class GhostBottleneck(nn.Module):
260
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
261
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
262
+ super().__init__()
263
+ c_ = c2 // 2
264
+ self.conv = nn.Sequential(
265
+ GhostConv(c1, c_, 1, 1), # pw
266
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
267
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
268
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
269
+ act=False)) if s == 2 else nn.Identity()
270
+
271
+ def forward(self, x):
272
+ return self.conv(x) + self.shortcut(x)
273
+
274
+
275
+ class Contract(nn.Module):
276
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
277
+ def __init__(self, gain=2):
278
+ super().__init__()
279
+ self.gain = gain
280
+
281
+ def forward(self, x):
282
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
283
+ s = self.gain
284
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
285
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
286
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
287
+
288
+
289
+ class Expand(nn.Module):
290
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
291
+ def __init__(self, gain=2):
292
+ super().__init__()
293
+ self.gain = gain
294
+
295
+ def forward(self, x):
296
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
297
+ s = self.gain
298
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
299
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
300
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
301
+
302
+
303
+ class Concat(nn.Module):
304
+ # Concatenate a list of tensors along dimension
305
+ def __init__(self, dimension=1):
306
+ super().__init__()
307
+ self.d = dimension
308
+
309
+ def forward(self, x):
310
+ return torch.cat(x, self.d)
311
+
312
+
313
+ class DetectMultiBackend(nn.Module):
314
+ # YOLOv5 MultiBackend class for python inference on various backends
315
+ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
316
+ # Usage:
317
+ # PyTorch: weights = *.pt
318
+ # TorchScript: *.torchscript
319
+ # ONNX Runtime: *.onnx
320
+ # ONNX OpenCV DNN: *.onnx --dnn
321
+ # OpenVINO: *_openvino_model
322
+ # CoreML: *.mlmodel
323
+ # TensorRT: *.engine
324
+ # TensorFlow SavedModel: *_saved_model
325
+ # TensorFlow GraphDef: *.pb
326
+ # TensorFlow Lite: *.tflite
327
+ # TensorFlow Edge TPU: *_edgetpu.tflite
328
+ # PaddlePaddle: *_paddle_model
329
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
330
+
331
+ super().__init__()
332
+ w = str(weights[0] if isinstance(weights, list) else weights)
333
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
334
+ fp16 &= pt or jit or onnx or engine # FP16
335
+ nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
336
+ stride = 32 # default stride
337
+ cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
338
+ if not (pt or triton):
339
+ w = attempt_download(w) # download if not local
340
+
341
+ if pt: # PyTorch
342
+ model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
343
+ stride = max(int(model.stride.max()), 32) # model stride
344
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
345
+ model.half() if fp16 else model.float()
346
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
347
+ elif jit: # TorchScript
348
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
349
+ extra_files = {'config.txt': ''} # model metadata
350
+ model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
351
+ model.half() if fp16 else model.float()
352
+ if extra_files['config.txt']: # load metadata dict
353
+ d = json.loads(extra_files['config.txt'],
354
+ object_hook=lambda d: {int(k) if k.isdigit() else k: v
355
+ for k, v in d.items()})
356
+ stride, names = int(d['stride']), d['names']
357
+ elif dnn: # ONNX OpenCV DNN
358
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
359
+ check_requirements('opencv-python>=4.5.4')
360
+ net = cv2.dnn.readNetFromONNX(w)
361
+ elif onnx: # ONNX Runtime
362
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
363
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
364
+ import onnxruntime
365
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
366
+ session = onnxruntime.InferenceSession(w, providers=providers)
367
+ output_names = [x.name for x in session.get_outputs()]
368
+ meta = session.get_modelmeta().custom_metadata_map # metadata
369
+ if 'stride' in meta:
370
+ stride, names = int(meta['stride']), eval(meta['names'])
371
+ elif xml: # OpenVINO
372
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
373
+ check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
374
+ from openvino.runtime import Core, Layout, get_batch
375
+ ie = Core()
376
+ if not Path(w).is_file(): # if not *.xml
377
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
378
+ network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
379
+ if network.get_parameters()[0].get_layout().empty:
380
+ network.get_parameters()[0].set_layout(Layout("NCHW"))
381
+ batch_dim = get_batch(network)
382
+ if batch_dim.is_static:
383
+ batch_size = batch_dim.get_length()
384
+ executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
385
+ stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
386
+ elif engine: # TensorRT
387
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
388
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
389
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
390
+ if device.type == 'cpu':
391
+ device = torch.device('cuda:0')
392
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
393
+ logger = trt.Logger(trt.Logger.INFO)
394
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
395
+ model = runtime.deserialize_cuda_engine(f.read())
396
+ context = model.create_execution_context()
397
+ bindings = OrderedDict()
398
+ output_names = []
399
+ fp16 = False # default updated below
400
+ dynamic = False
401
+ for i in range(model.num_bindings):
402
+ name = model.get_binding_name(i)
403
+ dtype = trt.nptype(model.get_binding_dtype(i))
404
+ if model.binding_is_input(i):
405
+ if -1 in tuple(model.get_binding_shape(i)): # dynamic
406
+ dynamic = True
407
+ context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
408
+ if dtype == np.float16:
409
+ fp16 = True
410
+ else: # output
411
+ output_names.append(name)
412
+ shape = tuple(context.get_binding_shape(i))
413
+ im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
414
+ bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
415
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
416
+ batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
417
+ elif coreml: # CoreML
418
+ LOGGER.info(f'Loading {w} for CoreML inference...')
419
+ import coremltools as ct
420
+ model = ct.models.MLModel(w)
421
+ elif saved_model: # TF SavedModel
422
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
423
+ import tensorflow as tf
424
+ keras = False # assume TF1 saved_model
425
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
426
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
427
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
428
+ import tensorflow as tf
429
+
430
+ def wrap_frozen_graph(gd, inputs, outputs):
431
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
432
+ ge = x.graph.as_graph_element
433
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
434
+
435
+ def gd_outputs(gd):
436
+ name_list, input_list = [], []
437
+ for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
438
+ name_list.append(node.name)
439
+ input_list.extend(node.input)
440
+ return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
441
+
442
+ gd = tf.Graph().as_graph_def() # TF GraphDef
443
+ with open(w, 'rb') as f:
444
+ gd.ParseFromString(f.read())
445
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
446
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
447
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
448
+ from tflite_runtime.interpreter import Interpreter, load_delegate
449
+ except ImportError:
450
+ import tensorflow as tf
451
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
452
+ if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
453
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
454
+ delegate = {
455
+ 'Linux': 'libedgetpu.so.1',
456
+ 'Darwin': 'libedgetpu.1.dylib',
457
+ 'Windows': 'edgetpu.dll'}[platform.system()]
458
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
459
+ else: # TFLite
460
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
461
+ interpreter = Interpreter(model_path=w) # load TFLite model
462
+ interpreter.allocate_tensors() # allocate
463
+ input_details = interpreter.get_input_details() # inputs
464
+ output_details = interpreter.get_output_details() # outputs
465
+ elif tfjs: # TF.js
466
+ raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
467
+ elif paddle: # PaddlePaddle
468
+ LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
469
+ check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
470
+ import paddle.inference as pdi
471
+ if not Path(w).is_file(): # if not *.pdmodel
472
+ w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
473
+ weights = Path(w).with_suffix('.pdiparams')
474
+ config = pdi.Config(str(w), str(weights))
475
+ if cuda:
476
+ config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
477
+ predictor = pdi.create_predictor(config)
478
+ input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
479
+ output_names = predictor.get_output_names()
480
+ elif triton: # NVIDIA Triton Inference Server
481
+ LOGGER.info(f'Using {w} as Triton Inference Server...')
482
+ check_requirements('tritonclient[all]')
483
+ from utils.triton import TritonRemoteModel
484
+ model = TritonRemoteModel(url=w)
485
+ nhwc = model.runtime.startswith("tensorflow")
486
+ else:
487
+ raise NotImplementedError(f'ERROR: {w} is not a supported format')
488
+
489
+ # class names
490
+ if 'names' not in locals():
491
+ names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
492
+ if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
493
+ names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
494
+
495
+ self.__dict__.update(locals()) # assign all variables to self
496
+
497
+ def forward(self, im, augment=False, visualize=False):
498
+ # YOLOv5 MultiBackend inference
499
+ b, ch, h, w = im.shape # batch, channel, height, width
500
+ if self.fp16 and im.dtype != torch.float16:
501
+ im = im.half() # to FP16
502
+ if self.nhwc:
503
+ im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
504
+
505
+ if self.pt: # PyTorch
506
+ y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
507
+ elif self.jit: # TorchScript
508
+ y = self.model(im)
509
+ elif self.dnn: # ONNX OpenCV DNN
510
+ im = im.cpu().numpy() # torch to numpy
511
+ self.net.setInput(im)
512
+ y = self.net.forward()
513
+ elif self.onnx: # ONNX Runtime
514
+ im = im.cpu().numpy() # torch to numpy
515
+ y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
516
+ elif self.xml: # OpenVINO
517
+ im = im.cpu().numpy() # FP32
518
+ y = list(self.executable_network([im]).values())
519
+ elif self.engine: # TensorRT
520
+ if self.dynamic and im.shape != self.bindings['images'].shape:
521
+ i = self.model.get_binding_index('images')
522
+ self.context.set_binding_shape(i, im.shape) # reshape if dynamic
523
+ self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
524
+ for name in self.output_names:
525
+ i = self.model.get_binding_index(name)
526
+ self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
527
+ s = self.bindings['images'].shape
528
+ assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
529
+ self.binding_addrs['images'] = int(im.data_ptr())
530
+ self.context.execute_v2(list(self.binding_addrs.values()))
531
+ y = [self.bindings[x].data for x in sorted(self.output_names)]
532
+ elif self.coreml: # CoreML
533
+ im = im.cpu().numpy()
534
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
535
+ # im = im.resize((192, 320), Image.ANTIALIAS)
536
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
537
+ if 'confidence' in y:
538
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
539
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
540
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
541
+ else:
542
+ y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
543
+ elif self.paddle: # PaddlePaddle
544
+ im = im.cpu().numpy().astype(np.float32)
545
+ self.input_handle.copy_from_cpu(im)
546
+ self.predictor.run()
547
+ y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
548
+ elif self.triton: # NVIDIA Triton Inference Server
549
+ y = self.model(im)
550
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
551
+ im = im.cpu().numpy()
552
+ if self.saved_model: # SavedModel
553
+ y = self.model(im, training=False) if self.keras else self.model(im)
554
+ elif self.pb: # GraphDef
555
+ y = self.frozen_func(x=self.tf.constant(im))
556
+ else: # Lite or Edge TPU
557
+ input = self.input_details[0]
558
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
559
+ if int8:
560
+ scale, zero_point = input['quantization']
561
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
562
+ self.interpreter.set_tensor(input['index'], im)
563
+ self.interpreter.invoke()
564
+ y = []
565
+ for output in self.output_details:
566
+ x = self.interpreter.get_tensor(output['index'])
567
+ if int8:
568
+ scale, zero_point = output['quantization']
569
+ x = (x.astype(np.float32) - zero_point) * scale # re-scale
570
+ y.append(x)
571
+ y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
572
+ y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
573
+
574
+ if isinstance(y, (list, tuple)):
575
+ return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
576
+ else:
577
+ return self.from_numpy(y)
578
+
579
+ def from_numpy(self, x):
580
+ return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
581
+
582
+ def warmup(self, imgsz=(1, 3, 640, 640)):
583
+ # Warmup model by running inference once
584
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
585
+ if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
586
+ im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
587
+ for _ in range(2 if self.jit else 1): #
588
+ self.forward(im) # warmup
589
+
590
+ @staticmethod
591
+ def _model_type(p='path/to/model.pt'):
592
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
593
+ # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
594
+ from export import export_formats
595
+ from utils.downloads import is_url
596
+ sf = list(export_formats().Suffix) # export suffixes
597
+ if not is_url(p, check=False):
598
+ check_suffix(p, sf) # checks
599
+ url = urlparse(p) # if url may be Triton inference server
600
+ types = [s in Path(p).name for s in sf]
601
+ types[8] &= not types[9] # tflite &= not edgetpu
602
+ triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
603
+ return types + [triton]
604
+
605
+ @staticmethod
606
+ def _load_metadata(f=Path('path/to/meta.yaml')):
607
+ # Load metadata from meta.yaml if it exists
608
+ if f.exists():
609
+ d = yaml_load(f)
610
+ return d['stride'], d['names'] # assign stride, names
611
+ return None, None
612
+
613
+
614
+ class AutoShape(nn.Module):
615
+ # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
616
+ conf = 0.25 # NMS confidence threshold
617
+ iou = 0.45 # NMS IoU threshold
618
+ agnostic = False # NMS class-agnostic
619
+ multi_label = False # NMS multiple labels per box
620
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
621
+ max_det = 1000 # maximum number of detections per image
622
+ amp = False # Automatic Mixed Precision (AMP) inference
623
+
624
+ def __init__(self, model, verbose=True):
625
+ super().__init__()
626
+ if verbose:
627
+ LOGGER.info('Adding AutoShape... ')
628
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
629
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
630
+ self.pt = not self.dmb or model.pt # PyTorch model
631
+ self.model = model.eval()
632
+ if self.pt:
633
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
634
+ m.inplace = False # Detect.inplace=False for safe multithread inference
635
+ m.export = True # do not output loss values
636
+
637
+ def _apply(self, fn):
638
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
639
+ self = super()._apply(fn)
640
+ if self.pt:
641
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
642
+ m.stride = fn(m.stride)
643
+ m.grid = list(map(fn, m.grid))
644
+ if isinstance(m.anchor_grid, list):
645
+ m.anchor_grid = list(map(fn, m.anchor_grid))
646
+ return self
647
+
648
+ @smart_inference_mode()
649
+ def forward(self, ims, size=640, augment=False, profile=False):
650
+ # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
651
+ # file: ims = 'data/images/zidane.jpg' # str or PosixPath
652
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
653
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
654
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
655
+ # numpy: = np.zeros((640,1280,3)) # HWC
656
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
657
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
658
+
659
+ dt = (Profile(), Profile(), Profile())
660
+ with dt[0]:
661
+ if isinstance(size, int): # expand
662
+ size = (size, size)
663
+ p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
664
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
665
+ if isinstance(ims, torch.Tensor): # torch
666
+ with amp.autocast(autocast):
667
+ return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
668
+
669
+ # Pre-process
670
+ n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
671
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
672
+ for i, im in enumerate(ims):
673
+ f = f'image{i}' # filename
674
+ if isinstance(im, (str, Path)): # filename or uri
675
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
676
+ im = np.asarray(exif_transpose(im))
677
+ elif isinstance(im, Image.Image): # PIL Image
678
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
679
+ files.append(Path(f).with_suffix('.jpg').name)
680
+ if im.shape[0] < 5: # image in CHW
681
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
682
+ im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
683
+ s = im.shape[:2] # HWC
684
+ shape0.append(s) # image shape
685
+ g = max(size) / max(s) # gain
686
+ shape1.append([y * g for y in s])
687
+ ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
688
+ shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
689
+ x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
690
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
691
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
692
+
693
+ with amp.autocast(autocast):
694
+ # Inference
695
+ with dt[1]:
696
+ y = self.model(x, augment=augment) # forward
697
+
698
+ # Post-process
699
+ with dt[2]:
700
+ y = non_max_suppression(y if self.dmb else y[0],
701
+ self.conf,
702
+ self.iou,
703
+ self.classes,
704
+ self.agnostic,
705
+ self.multi_label,
706
+ max_det=self.max_det) # NMS
707
+ for i in range(n):
708
+ scale_boxes(shape1, y[i][:, :4], shape0[i])
709
+
710
+ return Detections(ims, y, files, dt, self.names, x.shape)
711
+
712
+
713
+ class Detections:
714
+ # YOLOv5 detections class for inference results
715
+ def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
716
+ super().__init__()
717
+ d = pred[0].device # device
718
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
719
+ self.ims = ims # list of images as numpy arrays
720
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
721
+ self.names = names # class names
722
+ self.files = files # image filenames
723
+ self.times = times # profiling times
724
+ self.xyxy = pred # xyxy pixels
725
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
726
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
727
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
728
+ self.n = len(self.pred) # number of images (batch size)
729
+ self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
730
+ self.s = tuple(shape) # inference BCHW shape
731
+
732
+ def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
733
+ s, crops = '', []
734
+ for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
735
+ s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
736
+ if pred.shape[0]:
737
+ for c in pred[:, -1].unique():
738
+ n = (pred[:, -1] == c).sum() # detections per class
739
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
740
+ s = s.rstrip(', ')
741
+ if show or save or render or crop:
742
+ annotator = Annotator(im, example=str(self.names))
743
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
744
+ label = f'{self.names[int(cls)]} {conf:.2f}'
745
+ if crop:
746
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
747
+ crops.append({
748
+ 'box': box,
749
+ 'conf': conf,
750
+ 'cls': cls,
751
+ 'label': label,
752
+ 'im': save_one_box(box, im, file=file, save=save)})
753
+ else: # all others
754
+ annotator.box_label(box, label if labels else '', color=colors(cls))
755
+ im = annotator.im
756
+ else:
757
+ s += '(no detections)'
758
+
759
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
760
+ if show:
761
+ display(im) if is_notebook() else im.show(self.files[i])
762
+ if save:
763
+ f = self.files[i]
764
+ im.save(save_dir / f) # save
765
+ if i == self.n - 1:
766
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
767
+ if render:
768
+ self.ims[i] = np.asarray(im)
769
+ if pprint:
770
+ s = s.lstrip('\n')
771
+ return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
772
+ if crop:
773
+ if save:
774
+ LOGGER.info(f'Saved results to {save_dir}\n')
775
+ return crops
776
+
777
+ @TryExcept('Showing images is not supported in this environment')
778
+ def show(self, labels=True):
779
+ self._run(show=True, labels=labels) # show results
780
+
781
+ def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
782
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
783
+ self._run(save=True, labels=labels, save_dir=save_dir) # save results
784
+
785
+ def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
786
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
787
+ return self._run(crop=True, save=save, save_dir=save_dir) # crop results
788
+
789
+ def render(self, labels=True):
790
+ self._run(render=True, labels=labels) # render results
791
+ return self.ims
792
+
793
+ def pandas(self):
794
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
795
+ new = copy(self) # return copy
796
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
797
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
798
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
799
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
800
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
801
+ return new
802
+
803
+ def tolist(self):
804
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
805
+ r = range(self.n) # iterable
806
+ x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
807
+ # for d in x:
808
+ # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
809
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
810
+ return x
811
+
812
+ def print(self):
813
+ LOGGER.info(self.__str__())
814
+
815
+ def __len__(self): # override len(results)
816
+ return self.n
817
+
818
+ def __str__(self): # override print(results)
819
+ return self._run(pprint=True) # print results
820
+
821
+ def __repr__(self):
822
+ return f'YOLOv5 {self.__class__} instance\n' + self.__str__()
823
+
824
+
825
+ class Proto(nn.Module):
826
+ # YOLOv5 mask Proto module for segmentation models
827
+ def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
828
+ super().__init__()
829
+ self.cv1 = Conv(c1, c_, k=3)
830
+ self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
831
+ self.cv2 = Conv(c_, c_, k=3)
832
+ self.cv3 = Conv(c_, c2)
833
+
834
+ def forward(self, x):
835
+ return self.cv3(self.cv2(self.upsample(self.cv1(x))))
836
+
837
+
838
+ class Classify(nn.Module):
839
+ # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
840
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
841
+ super().__init__()
842
+ c_ = 1280 # efficientnet_b0 size
843
+ self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
844
+ self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
845
+ self.drop = nn.Dropout(p=0.0, inplace=True)
846
+ self.linear = nn.Linear(c_, c2) # to x(b,c2)
847
+
848
+ def forward(self, x):
849
+ if isinstance(x, list):
850
+ x = torch.cat(x, 1)
851
+ return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
models/experimental.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ """
3
+ Experimental modules
4
+ """
5
+ import math
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from utils.downloads import attempt_download
12
+
13
+
14
+ class Sum(nn.Module):
15
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
16
+ def __init__(self, n, weight=False): # n: number of inputs
17
+ super().__init__()
18
+ self.weight = weight # apply weights boolean
19
+ self.iter = range(n - 1) # iter object
20
+ if weight:
21
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
22
+
23
+ def forward(self, x):
24
+ y = x[0] # no weight
25
+ if self.weight:
26
+ w = torch.sigmoid(self.w) * 2
27
+ for i in self.iter:
28
+ y = y + x[i + 1] * w[i]
29
+ else:
30
+ for i in self.iter:
31
+ y = y + x[i + 1]
32
+ return y
33
+
34
+
35
+ class MixConv2d(nn.Module):
36
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
37
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
38
+ super().__init__()
39
+ n = len(k) # number of convolutions
40
+ if equal_ch: # equal c_ per group
41
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
42
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
43
+ else: # equal weight.numel() per group
44
+ b = [c2] + [0] * n
45
+ a = np.eye(n + 1, n, k=-1)
46
+ a -= np.roll(a, 1, axis=1)
47
+ a *= np.array(k) ** 2
48
+ a[0] = 1
49
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
50
+
51
+ self.m = nn.ModuleList([
52
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
53
+ self.bn = nn.BatchNorm2d(c2)
54
+ self.act = nn.SiLU()
55
+
56
+ def forward(self, x):
57
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
58
+
59
+
60
+ class Ensemble(nn.ModuleList):
61
+ # Ensemble of models
62
+ def __init__(self):
63
+ super().__init__()
64
+
65
+ def forward(self, x, augment=False, profile=False, visualize=False):
66
+ y = [module(x, augment, profile, visualize)[0] for module in self]
67
+ # y = torch.stack(y).max(0)[0] # max ensemble
68
+ # y = torch.stack(y).mean(0) # mean ensemble
69
+ y = torch.cat(y, 1) # nms ensemble
70
+ return y, None # inference, train output
71
+
72
+
73
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
74
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
75
+ from models.yolo import Detect, Model
76
+
77
+ model = Ensemble()
78
+ for w in weights if isinstance(weights, list) else [weights]:
79
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
80
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
81
+
82
+ # Model compatibility updates
83
+ if not hasattr(ckpt, 'stride'):
84
+ ckpt.stride = torch.tensor([32.])
85
+ if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
86
+ ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
87
+
88
+ model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
89
+
90
+ # Module compatibility updates
91
+ for m in model.modules():
92
+ t = type(m)
93
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
94
+ m.inplace = inplace # torch 1.7.0 compatibility
95
+ if t is Detect and not isinstance(m.anchor_grid, list):
96
+ delattr(m, 'anchor_grid')
97
+ setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
98
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
99
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
100
+
101
+ # Return model
102
+ if len(model) == 1:
103
+ return model[-1]
104
+
105
+ # Return detection ensemble
106
+ print(f'Ensemble created with {weights}\n')
107
+ for k in 'names', 'nc', 'yaml':
108
+ setattr(model, k, getattr(model[0], k))
109
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
110
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
111
+ return model
models/hub/anchors.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+ # Default anchors for COCO data
3
+
4
+
5
+ # P5 -------------------------------------------------------------------------------------------------------------------
6
+ # P5-640:
7
+ anchors_p5_640:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+
13
+ # P6 -------------------------------------------------------------------------------------------------------------------
14
+ # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15
+ anchors_p6_640:
16
+ - [9,11, 21,19, 17,41] # P3/8
17
+ - [43,32, 39,70, 86,64] # P4/16
18
+ - [65,131, 134,130, 120,265] # P5/32
19
+ - [282,180, 247,354, 512,387] # P6/64
20
+
21
+ # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22
+ anchors_p6_1280:
23
+ - [19,27, 44,40, 38,94] # P3/8
24
+ - [96,68, 86,152, 180,137] # P4/16
25
+ - [140,301, 303,264, 238,542] # P5/32
26
+ - [436,615, 739,380, 925,792] # P6/64
27
+
28
+ # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29
+ anchors_p6_1920:
30
+ - [28,41, 67,59, 57,141] # P3/8
31
+ - [144,103, 129,227, 270,205] # P4/16
32
+ - [209,452, 455,396, 358,812] # P5/32
33
+ - [653,922, 1109,570, 1387,1187] # P6/64
34
+
35
+
36
+ # P7 -------------------------------------------------------------------------------------------------------------------
37
+ # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38
+ anchors_p7_640:
39
+ - [11,11, 13,30, 29,20] # P3/8
40
+ - [30,46, 61,38, 39,92] # P4/16
41
+ - [78,80, 146,66, 79,163] # P5/32
42
+ - [149,150, 321,143, 157,303] # P6/64
43
+ - [257,402, 359,290, 524,372] # P7/128
44
+
45
+ # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46
+ anchors_p7_1280:
47
+ - [19,22, 54,36, 32,77] # P3/8
48
+ - [70,83, 138,71, 75,173] # P4/16
49
+ - [165,159, 148,334, 375,151] # P5/32
50
+ - [334,317, 251,626, 499,474] # P6/64
51
+ - [750,326, 534,814, 1079,818] # P7/128
52
+
53
+ # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54
+ anchors_p7_1920:
55
+ - [29,34, 81,55, 47,115] # P3/8
56
+ - [105,124, 207,107, 113,259] # P4/16
57
+ - [247,238, 222,500, 563,227] # P5/32
58
+ - [501,476, 376,939, 749,711] # P6/64
59
+ - [1126,489, 801,1222, 1618,1227] # P7/128
models/hub/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov3-tiny.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,14, 23,27, 37,58] # P4/16
9
+ - [81,82, 135,169, 344,319] # P5/32
10
+
11
+ # YOLOv3-tiny backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [16, 3, 1]], # 0
15
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16
+ [-1, 1, Conv, [32, 3, 1]],
17
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20
+ [-1, 1, Conv, [128, 3, 1]],
21
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22
+ [-1, 1, Conv, [256, 3, 1]],
23
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24
+ [-1, 1, Conv, [512, 3, 1]],
25
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27
+ ]
28
+
29
+ # YOLOv3-tiny head
30
+ head:
31
+ [[-1, 1, Conv, [1024, 3, 1]],
32
+ [-1, 1, Conv, [256, 1, 1]],
33
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34
+
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
38
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39
+
40
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41
+ ]
models/hub/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, 1, 1]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov5-bifpn.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 BiFPN head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5-fpn.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 FPN head
28
+ head:
29
+ [[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
30
+
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 3, C3, [512, False]], # 14 (P4/16-medium)
35
+
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 3, C3, [256, False]], # 18 (P3/8-small)
40
+
41
+ [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42
+ ]
models/hub/yolov5-p2.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [1024]],
21
+ [-1, 1, SPPF, [1024, 5]], # 9
22
+ ]
23
+
24
+ # YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
25
+ head:
26
+ [[-1, 1, Conv, [512, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 3, C3, [512, False]], # 13
30
+
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 2], 1, Concat, [1]], # cat backbone P2
39
+ [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
40
+
41
+ [-1, 1, Conv, [128, 3, 2]],
42
+ [[-1, 18], 1, Concat, [1]], # cat head P3
43
+ [-1, 3, C3, [256, False]], # 24 (P3/8-small)
44
+
45
+ [-1, 1, Conv, [256, 3, 2]],
46
+ [[-1, 14], 1, Concat, [1]], # cat head P4
47
+ [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
48
+
49
+ [-1, 1, Conv, [512, 3, 2]],
50
+ [[-1, 10], 1, Concat, [1]], # cat head P5
51
+ [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
52
+
53
+ [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
54
+ ]
models/hub/yolov5-p34.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
13
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14
+ [ -1, 3, C3, [ 128 ] ],
15
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16
+ [ -1, 6, C3, [ 256 ] ],
17
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18
+ [ -1, 9, C3, [ 512 ] ],
19
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20
+ [ -1, 3, C3, [ 1024 ] ],
21
+ [ -1, 1, SPPF, [ 1024, 5 ] ], # 9
22
+ ]
23
+
24
+ # YOLOv5 v6.0 head with (P3, P4) outputs
25
+ head:
26
+ [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29
+ [ -1, 3, C3, [ 512, False ] ], # 13
30
+
31
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
32
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34
+ [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35
+
36
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
37
+ [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
38
+ [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
39
+
40
+ [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
41
+ ]
models/hub/yolov5-p6.yaml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [768]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
+ [-1, 3, C3, [1024]],
23
+ [-1, 1, SPPF, [1024, 5]], # 11
24
+ ]
25
+
26
+ # YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
27
+ head:
28
+ [[-1, 1, Conv, [768, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
31
+ [-1, 3, C3, [768, False]], # 15
32
+
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
36
+ [-1, 3, C3, [512, False]], # 19
37
+
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
41
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
42
+
43
+ [-1, 1, Conv, [256, 3, 2]],
44
+ [[-1, 20], 1, Concat, [1]], # cat head P4
45
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
46
+
47
+ [-1, 1, Conv, [512, 3, 2]],
48
+ [[-1, 16], 1, Concat, [1]], # cat head P5
49
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
50
+
51
+ [-1, 1, Conv, [768, 3, 2]],
52
+ [[-1, 12], 1, Concat, [1]], # cat head P6
53
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
54
+
55
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
56
+ ]
models/hub/yolov5-p7.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [768]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
+ [-1, 3, C3, [1024]],
23
+ [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
24
+ [-1, 3, C3, [1280]],
25
+ [-1, 1, SPPF, [1280, 5]], # 13
26
+ ]
27
+
28
+ # YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
29
+ head:
30
+ [[-1, 1, Conv, [1024, 1, 1]],
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 10], 1, Concat, [1]], # cat backbone P6
33
+ [-1, 3, C3, [1024, False]], # 17
34
+
35
+ [-1, 1, Conv, [768, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
38
+ [-1, 3, C3, [768, False]], # 21
39
+
40
+ [-1, 1, Conv, [512, 1, 1]],
41
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
42
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
43
+ [-1, 3, C3, [512, False]], # 25
44
+
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
47
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
48
+ [-1, 3, C3, [256, False]], # 29 (P3/8-small)
49
+
50
+ [-1, 1, Conv, [256, 3, 2]],
51
+ [[-1, 26], 1, Concat, [1]], # cat head P4
52
+ [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
53
+
54
+ [-1, 1, Conv, [512, 3, 2]],
55
+ [[-1, 22], 1, Concat, [1]], # cat head P5
56
+ [-1, 3, C3, [768, False]], # 35 (P5/32-large)
57
+
58
+ [-1, 1, Conv, [768, 3, 2]],
59
+ [[-1, 18], 1, Concat, [1]], # cat head P6
60
+ [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
61
+
62
+ [-1, 1, Conv, [1024, 3, 2]],
63
+ [[-1, 14], 1, Concat, [1]], # cat head P7
64
+ [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
65
+
66
+ [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
67
+ ]
models/hub/yolov5-panet.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 PANet head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5l6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5m6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.67 # model depth multiple
6
+ width_multiple: 0.75 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]