cra-v1-7b / app.py
molbal's picture
Test
12fa70f
import gradio as gr
from huggingface_hub import InferenceClient
# Use the CRA-v1-7B model (which uses the GGUF file internally)
client = InferenceClient("molbal/CRA-v1-7B")
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
# Build the conversation history; always include the system message
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
# Call the model with streaming and the new parameters
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
num_ctx=16384,
repeat_penalty=1.05,
):
token = chunk.choices[0].delta.content
response += token
yield response
# Create an alert message to inform users that inference runs on CPU (and will be slow)
cpu_alert = gr.Markdown("**Note:** This model runs on CPU, so inference may be slow.")
# Build the UI using Blocks to combine the alert and the ChatInterface
with gr.Blocks() as demo:
cpu_alert.render()
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="### System: You are a writer’s assistant. ### Task: Understand how the story flows, what motivations the characters have and how they will interact with each other and the world as a step by step thought process before continuing the story. ### Context: {context}",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.05, label="Top-p (nucleus sampling)")
]
)
chat_interface.render()
if __name__ == "__main__":
demo.launch()