import gradio as gr from huggingface_hub import InferenceClient # Use the CRA-v1-7B model (which uses the GGUF file internally) client = InferenceClient("molbal/CRA-v1-7B") def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): # Build the conversation history; always include the system message messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" # Call the model with streaming and the new parameters for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, num_ctx=16384, repeat_penalty=1.05, ): token = chunk.choices[0].delta.content response += token yield response # Create an alert message to inform users that inference runs on CPU (and will be slow) cpu_alert = gr.Markdown("**Note:** This model runs on CPU, so inference may be slow.") # Build the UI using Blocks to combine the alert and the ChatInterface with gr.Blocks() as demo: cpu_alert.render() chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="### System: You are a writer’s assistant. ### Task: Understand how the story flows, what motivations the characters have and how they will interact with each other and the world as a step by step thought process before continuing the story. ### Context: {context}", label="System message" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.05, label="Top-p (nucleus sampling)") ] ) chat_interface.render() if __name__ == "__main__": demo.launch()