File size: 5,566 Bytes
2c8cfc0
 
847491b
 
 
 
 
 
 
 
 
 
2c8cfc0
 
847491b
b1f1dd7
847491b
b1f1dd7
 
847491b
 
 
 
 
 
 
 
 
 
 
b1f1dd7
86c7913
b1f1dd7
 
 
 
847491b
2c8cfc0
 
 
 
 
 
 
847491b
2c8cfc0
b1f1dd7
 
 
 
 
 
 
847491b
b1f1dd7
 
2c8cfc0
 
 
b1f1dd7
 
2c8cfc0
 
847491b
 
 
 
 
 
 
86c7913
847491b
 
2c8cfc0
 
847491b
2c8cfc0
 
b1f1dd7
 
 
 
 
847491b
b1f1dd7
 
2c8cfc0
cfc0db8
 
b1f1dd7
cfc0db8
 
847491b
cfc0db8
 
2c8cfc0
 
 
b1f1dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c8cfc0
847491b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c8cfc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Examples\n",
    "\n",
    "Below you can find some examples of how to use the 🤖 `Megabots` library."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "from megabots import bot\n",
    "from dotenv import load_dotenv"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Creating a bot\n",
    "\n",
    "The `bot` object is the main object of the library. It is used to create a bot and to interact with it.\n",
    "\n",
    "The `index` argument specifies the index to use for the bot. It can either be a saved index file (e.g., `index.pkl`) or a directory of documents (e.g., `./index`). In the case of the directory the index will be automatically created. If no index is specified the `bot` will look for `index.pkl` or `./index`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using model: gpt-3.5-turbo\n",
      "Loading path from pickle file:  ./index.pkl ...\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'The first roster of the Avengers included Iron Man, Thor, Hulk, Ant-Man, and the Wasp.'"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "qnabot = bot(\"qna-over-docs\", index=\"./index.pkl\")\n",
    "qnabot.ask(\"what was the first roster of the avengers?\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Changing the bot's prompt\n",
    "\n",
    "You can change the bot's prompt to customize it to your needs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using model: gpt-3.5-turbo\n",
      "Loading path from pickle file:  ./index.pkl ...\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"Hmmm! Let me think about that... Ah yes, the original Avengers lineup included Iron Man, Thor, Hulk, Ant-Man, and the Wasp. They were like the ultimate superhero squad, except for maybe the Teenage Mutant Ninja Turtles. But let's be real, they were just a bunch of turtles who liked pizza.\""
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "prompt_template = \"\"\"\n",
    "Use the following pieces of context to answer the question at the end. \n",
    "If you don't know the answer, just say that you don't know, don't try to make up an answer.\n",
    "Be very playfull and humourous in your responses. always try to make the user laugh.\n",
    "Always start your answers with 'Hmmm! Let me think about that...'\n",
    "{context}\n",
    "\n",
    "Question: {question}\n",
    "Helpful humorous answer:\"\"\"\n",
    "\n",
    "load_dotenv()\n",
    "\n",
    "qnabot = bot(\n",
    "    \"qna-over-docs\",\n",
    "    index=\"./index.pkl\",\n",
    "    prompt_template=prompt_template,\n",
    "    prompt_variables=[\"context\", \"question\"],\n",
    ")\n",
    "qnabot.ask(\"what was the first roster of the avengers?\")\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Using Megabots with Milvus\n",
    "\n",
    "Megabots `bot` can also use Milvus as a backend for its search engine. You can find an example of how to do it below.\n",
    "\n",
    "In order to run Milvus you need to follow [this guide](https://milvus.io/docs/example_code.md) to download a docker compose file and run it.\n",
    "The command is:\n",
    "  \n",
    "```bash\n",
    "wget https://raw.githubusercontent.com/milvus-io/pymilvus/v2.2.7/examples/hello_milvus.py\n",
    "```\n",
    "You can then [install Attu](https://milvus.io/docs/attu_install-docker.md) as a management tool for Milvus"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using model: gpt-3.5-turbo\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'The first roster of the Avengers included Iron Man, Thor, Hulk, Ant-Man, and the Wasp.'"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from megabots import bot, vectorstore\n",
    "\n",
    "# Create a vectorstore object. Default port is 19530 and default host is localhost\n",
    "milvus = vectorstore(\"milvus\")\n",
    "\n",
    "# Point it to your files directory so that it can index the files and add them to the vectorstore\n",
    "bot = bot(\"qna-over-docs\", index=\"./examples/files/\", vectorstore=milvus)\n",
    "\n",
    "bot.ask(\"what was the first roster of the avengers?\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}