Spaces:
Runtime error
Runtime error
π Minor stuff
Browse files- .gitignore +1 -0
- examples/example.ipynb β example.ipynb +11 -10
- qnabot/QnABot.py +10 -21
.gitignore
CHANGED
@@ -5,4 +5,5 @@ qnabot.egg-info
|
|
5 |
dist
|
6 |
build
|
7 |
**.pickle
|
|
|
8 |
.env
|
|
|
5 |
dist
|
6 |
build
|
7 |
**.pickle
|
8 |
+
**.pkl
|
9 |
.env
|
examples/example.ipynb β example.ipynb
RENAMED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
@@ -10,32 +10,33 @@
|
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
"Using model: gpt-3.5-turbo\n",
|
13 |
-
"
|
14 |
]
|
15 |
}
|
16 |
],
|
17 |
"source": [
|
18 |
-
"from qnabot
|
19 |
-
"import
|
20 |
"\n",
|
21 |
-
"
|
22 |
"\n",
|
23 |
-
"bot = QnABot(directory=\"./files\")"
|
|
|
24 |
]
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [
|
31 |
{
|
32 |
"name": "stdout",
|
33 |
"output_type": "stream",
|
34 |
"text": [
|
35 |
-
"The first roster of
|
36 |
-
"SOURCES: files/facts.txt\n",
|
37 |
"Vision is an android superhero who was created by Ultron but ultimately joined the Avengers and became an important member of the team.\n",
|
38 |
-
"SOURCES: files/facts.txt\n"
|
39 |
]
|
40 |
}
|
41 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
|
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
"Using model: gpt-3.5-turbo\n",
|
13 |
+
"Loading path from disk...\n"
|
14 |
]
|
15 |
}
|
16 |
],
|
17 |
"source": [
|
18 |
+
"from qnabot import QnABot\n",
|
19 |
+
"from dotenv import load_dotenv\n",
|
20 |
"\n",
|
21 |
+
"load_dotenv()\n",
|
22 |
"\n",
|
23 |
+
"bot = QnABot(directory=\"./examples/files\", index=\"./index.pkl\", verbose=True)\n",
|
24 |
+
"# bot.save_index(\"./index.pkl\")"
|
25 |
]
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": 2,
|
30 |
"metadata": {},
|
31 |
"outputs": [
|
32 |
{
|
33 |
"name": "stdout",
|
34 |
"output_type": "stream",
|
35 |
"text": [
|
36 |
+
"The first roster of Avengers in comics included Iron Man, Thor, Hulk, Ant-Man, and the Wasp.\n",
|
37 |
+
"SOURCES: examples/files/facts.txt\n",
|
38 |
"Vision is an android superhero who was created by Ultron but ultimately joined the Avengers and became an important member of the team.\n",
|
39 |
+
"SOURCES: examples/files/facts.txt\n"
|
40 |
]
|
41 |
}
|
42 |
],
|
qnabot/QnABot.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Import necessary libraries and modules
|
2 |
from langchain.llms import OpenAI
|
3 |
from langchain.chat_models import ChatOpenAI
|
4 |
from langchain.embeddings import OpenAIEmbeddings
|
@@ -7,6 +6,7 @@ from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
|
7 |
from langchain.vectorstores.faiss import FAISS
|
8 |
import pickle
|
9 |
import os
|
|
|
10 |
|
11 |
|
12 |
class QnABot:
|
@@ -15,7 +15,8 @@ class QnABot:
|
|
15 |
directory: str,
|
16 |
index: str | None = None,
|
17 |
model: str | None = None,
|
18 |
-
|
|
|
19 |
):
|
20 |
# Initialize the QnABot by selecting a model, creating a loader,
|
21 |
# and loading or creating an index
|
@@ -24,7 +25,7 @@ class QnABot:
|
|
24 |
self.load_or_create_index(index)
|
25 |
|
26 |
# Load the question-answering chain for the selected model
|
27 |
-
self.chain = load_qa_with_sources_chain(self.llm)
|
28 |
|
29 |
def select_model(self, model: str | None, temperature: float):
|
30 |
# Select and set the appropriate model based on the provided input
|
@@ -60,26 +61,14 @@ class QnABot:
|
|
60 |
with open(index_path, "wb") as f:
|
61 |
pickle.dump(self.search_index, f)
|
62 |
|
63 |
-
def print_answer(self, question, k=1):
|
64 |
# Retrieve and print the answer to the given question
|
65 |
input_documents = self.search_index.similarity_search(question, k=k)
|
66 |
-
|
67 |
-
|
68 |
-
{
|
69 |
-
"input_documents": input_documents,
|
70 |
-
"question": question,
|
71 |
-
},
|
72 |
-
return_only_outputs=True,
|
73 |
-
)["output_text"]
|
74 |
-
)
|
75 |
|
76 |
-
def get_answer(self, question, k=1) -> str:
|
77 |
# Retrieve the answer to the given question and return it
|
78 |
input_documents = self.search_index.similarity_search(question, k=k)
|
79 |
-
|
80 |
-
|
81 |
-
"input_documents": input_documents,
|
82 |
-
"question": question,
|
83 |
-
},
|
84 |
-
return_only_outputs=True,
|
85 |
-
)["output_text"]
|
|
|
|
|
1 |
from langchain.llms import OpenAI
|
2 |
from langchain.chat_models import ChatOpenAI
|
3 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
6 |
from langchain.vectorstores.faiss import FAISS
|
7 |
import pickle
|
8 |
import os
|
9 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
10 |
|
11 |
|
12 |
class QnABot:
|
|
|
15 |
directory: str,
|
16 |
index: str | None = None,
|
17 |
model: str | None = None,
|
18 |
+
verbose: bool = False,
|
19 |
+
temperature: int = 0,
|
20 |
):
|
21 |
# Initialize the QnABot by selecting a model, creating a loader,
|
22 |
# and loading or creating an index
|
|
|
25 |
self.load_or_create_index(index)
|
26 |
|
27 |
# Load the question-answering chain for the selected model
|
28 |
+
self.chain = load_qa_with_sources_chain(self.llm, verbose=verbose)
|
29 |
|
30 |
def select_model(self, model: str | None, temperature: float):
|
31 |
# Select and set the appropriate model based on the provided input
|
|
|
61 |
with open(index_path, "wb") as f:
|
62 |
pickle.dump(self.search_index, f)
|
63 |
|
64 |
+
def print_answer(self, question: str, k=1):
|
65 |
# Retrieve and print the answer to the given question
|
66 |
input_documents = self.search_index.similarity_search(question, k=k)
|
67 |
+
a = self.chain.run(input_documents=input_documents, question=question)
|
68 |
+
print(a)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
def get_answer(self, question: str, k=1) -> str:
|
71 |
# Retrieve the answer to the given question and return it
|
72 |
input_documents = self.search_index.similarity_search(question, k=k)
|
73 |
+
answer = self.chain.run(input_documents=input_documents, question=question)
|
74 |
+
return answer
|
|
|
|
|
|
|
|
|
|