File size: 2,251 Bytes
8218c57
 
 
071fa19
8218c57
 
 
 
071fa19
8218c57
 
 
 
 
 
 
 
 
 
1adfcb4
8218c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69243ad
8218c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69243ad
 
 
 
8218c57
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import pandas as pd


df = pd.read_json("./tourisme_chatbot.json")

context_data = []
for i in range(len(df)):
  context = ""
  for j in range(4):
    context += df.columns[j]
    context += ": "
    context += df.iloc[i][j]
    context += " "
  context_data.append(context)


import os

# Get the secret key from the environment
groq_key = os.environ.get('groq_api_key')

## LLM used for RAG
from langchain_groq import ChatGroq

llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)

## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

# create vector store!
from langchain_chroma import Chroma

vectorstore = Chroma(
    collection_name="tourism_dataset_store",
    embedding_function=embed_model,
    persist_directory="./",
)

# add data to vector nstore
vectorstore.add_texts(context_data)

retriever = vectorstore.as_retriever()

from langchain_core.prompts import PromptTemplate

template = ("""You are a Moroccan tourism expert.
    Use the provided context to answer the question.
    If you don't know the answer, say so. Explain your answer in detail.
    Do not discuss the context in your response; just provide the answer directly.
    Context: {context}
    Question: {question}
    Answer:""")

rag_prompt = PromptTemplate.from_template(template)

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | rag_prompt
    | llm
    | StrOutputParser()
)

import gradio as gr

def rag_memory_stream(text):
    partial_text = ""
    for new_text in rag_chain.stream(text):
        partial_text += new_text
        yield partial_text

examples = ['Tourist attraction sites in Morocco', 'What are some fun activities to do in Morocco?', 'What can I do in Marrakech 40000 Morocco?']




title = "Real-time AI App with Groq API and LangChain to Answer Morroco Tourism questions"
demo = gr.Interface(
    title=title,
    fn=rag_memory_stream,
    inputs="text",
    outputs="text",
    examples=examples,
    allow_flagging="never",
)


if __name__ == "__main__":
    demo.launch()