morkovka1337's picture
Update app.py
12a5951
import gradio as gr
import sys
import logging
from huggingsound import SpeechRecognitionModel
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
# COPYPASTED FROM: https://huggingface.co/spaces/jonatasgrosman/asr/blob/main/app.py
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
model_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-russian"
CACHED_MODEL = {"rus": AutoModelForCTC.from_pretrained(model_ID)}
def run(input_file, history, model_size="300M"):
language = "Russian"
decoding_type = "LM"
logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")
# history = history or []
# the history seems to be not by session anymore, so I'll deactivate this for now
history = []
model_instance = CACHED_MODEL.get("rus")
if decoding_type == "LM":
processor = Wav2Vec2ProcessorWithLM.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-russian")
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
else:
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-russian")
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor, decoder=None)
transcription = asr(input_file.name, chunk_length_s=5, stride_length_s=1)["text"]
logger.info(f"Transcription for {language}-{model_size}-{decoding_type} for {input_file}: {transcription}")
history.append({
"model_id": model_ID,
"language": language,
"model_size": model_size,
"decoding_type": decoding_type,
"transcription": transcription,
"error_message": None
})
html_output = "<div class='result'>"
for item in history:
if item["error_message"] is not None:
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
else:
url_suffix = " + LM" if item["decoding_type"] == "LM" else ""
html_output += "<div class='result_item result_item_success'>"
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
html_output += f'{item["transcription"]}<br/>'
html_output += "</div>"
html_output += "</div>"
return html_output, history
gr.Interface(
run,
inputs=[
gr.inputs.Audio(source="microphone", type="file", label="Record something..."),
"state"
],
outputs=[
gr.outputs.HTML(label="Outputs"),
"state"
],
title="Automatic Speech Recognition",
description="",
css="""
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
""",
allow_screenshot=False,
allow_flagging="never",
theme="grass"
).launch(enable_queue=True)