Spaces:
Build error
Build error
import gradio as gr | |
import sys | |
import logging | |
from huggingsound import SpeechRecognitionModel | |
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM | |
# COPYPASTED FROM: https://huggingface.co/spaces/jonatasgrosman/asr/blob/main/app.py | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
model_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-russian" | |
CACHED_MODEL = {"rus": AutoModelForCTC.from_pretrained(model_ID)} | |
def run(input_file, history, model_size="300M"): | |
language = "Russian" | |
decoding_type = "LM" | |
logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}") | |
# history = history or [] | |
# the history seems to be not by session anymore, so I'll deactivate this for now | |
history = [] | |
model_instance = CACHED_MODEL.get("rus") | |
if decoding_type == "LM": | |
processor = Wav2Vec2ProcessorWithLM.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-russian") | |
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, decoder=processor.decoder) | |
else: | |
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-russian") | |
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, decoder=None) | |
transcription = asr(input_file.name, chunk_length_s=5, stride_length_s=1)["text"] | |
logger.info(f"Transcription for {language}-{model_size}-{decoding_type} for {input_file}: {transcription}") | |
history.append({ | |
"model_id": model_ID, | |
"language": language, | |
"model_size": model_size, | |
"decoding_type": decoding_type, | |
"transcription": transcription, | |
"error_message": None | |
}) | |
html_output = "<div class='result'>" | |
for item in history: | |
if item["error_message"] is not None: | |
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>" | |
else: | |
url_suffix = " + LM" if item["decoding_type"] == "LM" else "" | |
html_output += "<div class='result_item result_item_success'>" | |
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>' | |
html_output += f'{item["transcription"]}<br/>' | |
html_output += "</div>" | |
html_output += "</div>" | |
return html_output, history | |
gr.Interface( | |
run, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="file", label="Record something..."), | |
"state" | |
], | |
outputs=[ | |
gr.outputs.HTML(label="Outputs"), | |
"state" | |
], | |
title="Automatic Speech Recognition", | |
description="", | |
css=""" | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""", | |
allow_screenshot=False, | |
allow_flagging="never", | |
theme="grass" | |
).launch(enable_queue=True) |