rwkv-music / midi_util.py
mrfakename's picture
Create midi_util.py
aa189b2 verified
raw
history blame
26.2 kB
import json
import random
from dataclasses import dataclass
from functools import lru_cache
from math import ceil, floor, log
from typing import Dict, Iterator, List, Optional, Tuple
import mido
@dataclass
class VocabConfig:
# Number of note events. Should be 128.
note_events: int
# Number of wait events. Configurable, must evenly divide max_wait_time.
wait_events: int
# Max wait time in milliseconds to be represented by a single token.
max_wait_time: int
# Number of velocity events. Should be 128 (or 100? need to check midi standard)
velocity_events: int
# Number of bins to quantize velocity into. Should evenly divide velocity_events.
velocity_bins: int
# Exponential scaling factor for velocity bin sizes. 1.0 = linear scaling.
velocity_exp: float
# Whether to sort tokens by instrument, note. This should improve data reducibility.
do_token_sorting: bool
# Whether tokens should be represented as combined instrument/note/velocity tokens, or separate tokens for each.
unrolled_tokens: bool
# If non-zero, notes held for this many seconds will be automatically released during str->midi decoding.
decode_end_held_note_delay: float
# If true, repeated notes will be automatically released before playing again during str->midi decoding.
decode_fix_repeated_notes: bool
# List of instrument names to use for binning. Must have at most 16 values.
bin_instrument_names: List[str]
# Indicates which bin name represents percussion instruments on MIDI channel 10.
ch10_instrument_bin_name: str
# Mapping from instrument name to bin name.
program_name_to_bin_name: Dict[str, str]
# Mapping from bin name to program name.
bin_name_to_program_name: Dict[str, str]
# Mapping from program number to instrument name.
instrument_names: Dict[str, str]
# Manual override for velocity bins. Each element is the max velocity value for that bin by index.
velocity_bins_override: Optional[List[int]] = None
def __post_init__(self):
self.validate()
self._instrument_names_str_to_int = {name: int(i) for i, name in self.instrument_names.items()}
self._instrument_names_int_to_str = {int(i): name for i, name in self.instrument_names.items()}
self._bin_str_to_int = {name: int(i) for i, name in enumerate(self.bin_instrument_names)}
self._bin_int_to_instrument_int = [self._instrument_names_str_to_int[self.bin_name_to_program_name[name]] if name != self.ch10_instrument_bin_name else 0 for name in self.bin_instrument_names]
self._instrument_int_to_bin_int = [self._bin_str_to_int[self.program_name_to_bin_name[instr]] if self.program_name_to_bin_name[instr] != "" else -1 for instr in self.program_name_to_bin_name.keys()]
self._ch10_bin_int = self._bin_str_to_int[self.ch10_instrument_bin_name] if self.ch10_instrument_bin_name else -1
self.short_instr_bin_names = []
for instr in self.bin_instrument_names:
i = min(1, len(instr))
while instr[:i] in self.short_instr_bin_names:
i += 1
self.short_instr_bin_names.append(instr[:i])
self._short_instrument_names_str_to_int = {name: int(i) for i, name in enumerate(self.short_instr_bin_names)}
range_excluding_ch10 = [(i if i < 9 else i+1) for i in range(len(self.bin_instrument_names))]
bins_excluding_ch10 = [n for n in self.bin_instrument_names if n != self.ch10_instrument_bin_name]
self.bin_channel_map = {bin: channel for channel, bin in zip(range_excluding_ch10, bins_excluding_ch10)}
if self.ch10_instrument_bin_name:
self.bin_channel_map[self.ch10_instrument_bin_name] = 9
def validate(self):
if self.max_wait_time % self.wait_events != 0:
raise ValueError("max_wait_time must be exactly divisible by wait_events")
if self.velocity_bins < 2:
raise ValueError("velocity_bins must be at least 2")
if len(self.bin_instrument_names) > 16:
raise ValueError("bin_instruments must have at most 16 values")
if self.velocity_bins_override:
print("VocabConfig is using velocity_bins_override. Ignoring velocity_exp.")
if len(self.velocity_bins_override) != self.velocity_bins:
raise ValueError("velocity_bins_override must have same length as velocity_bins")
if self.ch10_instrument_bin_name and self.ch10_instrument_bin_name not in self.bin_instrument_names:
raise ValueError("ch10_instrument_bin_name must be in bin_instruments")
if self.velocity_exp <= 0:
raise ValueError("velocity_exp must be greater than 0")
@classmethod
def from_json(cls, path: str):
with open(path, "r") as f:
config = json.load(f)
return cls(**config)
class VocabUtils:
def __init__(self, cfg: VocabConfig) -> None:
self.cfg = cfg
@lru_cache(maxsize=128)
def format_wait_token(self, wait: int) -> str:
return f"t{wait}"
@lru_cache(maxsize=128)
def format_note_token(self, instrument_bin: int, note: int, velocity_bin: int) -> str:
return f"{self.cfg.short_instr_bin_names[instrument_bin]}:{note:x}:{velocity_bin:x}"
def format_unrolled_note(self, note: int) -> str:
return f"n{note:x}"
def format_unrolled_velocity(self, velocity_bin: int) -> str:
return f"v{velocity_bin:x}"
def format_unrolled_instrument_bin(self, instrument_bin: int) -> str:
return f"i{self.cfg.short_instr_bin_names[instrument_bin]}"
def velocity_to_bin(self, velocity: float) -> int:
velocity = max(0, min(velocity, self.cfg.velocity_events - 1))
if self.cfg.velocity_bins_override:
for i, v in enumerate(self.cfg.velocity_bins_override):
if velocity <= v:
return i
return 0
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return ceil(velocity / binsize)
else:
return ceil((self.cfg.velocity_events*((self.cfg.velocity_exp**(velocity/self.cfg.velocity_events)-1.0) / (self.cfg.velocity_exp-1.0))) / binsize)
def bin_to_velocity(self, bin: int) -> int:
if self.cfg.velocity_bins_override:
return self.cfg.velocity_bins_override[bin]
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return max(0, ceil(bin * binsize - 1))
else:
return max(0, ceil(self.cfg.velocity_events*log(((self.cfg.velocity_exp-1)*binsize*bin)/self.cfg.velocity_events+1, self.cfg.velocity_exp) - 1))
def delta_to_wait_ids(self, delta_ms: float) -> Iterator[int]:
def roundi(f: float):
return ceil(f - 0.5)
max_wait_ms = self.cfg.max_wait_time
div = max_wait_ms / self.cfg.wait_events
#if delta_ms // max_wait_ms > 512: # arbitrary limit to avoid excessive time_shifts
# raise ValueError("delta_time is too large")
if delta_ms > max_wait_ms * 10:
delta_ms = max_wait_ms * 10 # truncate time
for _ in range(floor(delta_ms / max_wait_ms)):
yield roundi(max_wait_ms / div)
leftover_time_shift = roundi((delta_ms % max_wait_ms) / div)
if leftover_time_shift > 0:
yield leftover_time_shift
def prog_data_to_token_data(self, program: int, channel: int, note: int, velocity: float) -> Optional[Tuple[int, int, int]]:
if channel == 9:
if self.cfg._ch10_bin_int == -1:
return None
return self.cfg._ch10_bin_int, note, self.velocity_to_bin(velocity)
instrument_bin = self.cfg._instrument_int_to_bin_int[program]
if instrument_bin != -1:
return instrument_bin, note, self.velocity_to_bin(velocity)
return None
def prog_data_list_to_token_data_list(self, data: List[Tuple[int, int, int, float]]) -> Iterator[Tuple[int, int, int]]:
for d in data:
token_data = self.prog_data_to_token_data(*d)
if token_data is not None:
yield token_data
def sort_token_data(self, data: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:
# ensure order is preserved for tokens with the same instrument, note
data = [(i, n, v, x) for x, (i, n, v) in enumerate(data)]
data.sort(key=lambda x: (x[0]!=self.cfg._ch10_bin_int, x[0], x[1], x[3]))
return [(i, n, v) for i, n, v, _ in data]
def data_to_wait_tokens(self, delta_ms: float) -> List[str]:
if delta_ms == 0.0:
return []
return [self.format_wait_token(i) for i in self.delta_to_wait_ids(delta_ms)]
def wait_token_to_delta(self, token: str) -> float:
return self.cfg.max_wait_time / self.cfg.wait_events * int(token[1:])
def note_token_to_data(self, token: str) -> Tuple[int, int, int]:
instr_str, note_str, velocity_str = token.strip().split(":")
instr_bin = self.cfg._short_instrument_names_str_to_int[instr_str]
note = int(note_str, base=16)
velocity = self.bin_to_velocity(int(velocity_str, base=16))
return instr_bin, note, velocity
@dataclass
class AugmentValues:
instrument_bin_remap: Dict[int, int]
velocity_mod_factor: float
transpose_semitones: int
time_stretch_factor: float
@classmethod
def default(cls) -> "AugmentValues":
return cls(
instrument_bin_remap={},
velocity_mod_factor=1.0,
transpose_semitones=0,
time_stretch_factor=1.0,
)
@dataclass
class AugmentConfig:
# The number of times to augment each MIDI file. The dataset size will be multiplied by this number.
augment_data_factor: int
# A list of instrument names to randomly swap with each other.
instrument_mixups: List[List[str]]
# A list of percentages to change the note velocity by. 0.0 = no change. 0 is included by default.
velocity_mod_pct: List[float]
# A list of semitones to transpose by. 0 is included by default.
transpose_semitones: List[int]
# A list of percentages to stretch the tempo by. 0.0 = no stretch. 0 is included by default.
time_stretch_pct: List[float]
# Random seed to use for reproducibility.
seed: int
cfg: VocabConfig
def __post_init__(self):
self.validate()
if len(self.velocity_mod_pct) == 0:
self.velocity_mod_pct = [0.0]
if len(self.transpose_semitones) == 0:
self.transpose_semitones = [0]
if len(self.time_stretch_pct) == 0:
self.time_stretch_pct = [0.0]
self._instrument_mixups_int = [[self.cfg._bin_str_to_int[i] for i in l if i in self.cfg._bin_str_to_int] for l in self.instrument_mixups]
self._instrument_mixups_int = [l for l in self._instrument_mixups_int if len(l) > 0] # remove empty lists
self._instrument_pool_assignments = {}
self._mixup_pools = []
for pool_i, mixup_list in enumerate(self._instrument_mixups_int):
pool = set()
for i in mixup_list:
pool.add(i)
self._instrument_pool_assignments[i] = pool_i
self._mixup_pools.append(pool)
def validate(self):
if self.augment_data_factor < 1:
raise ValueError("augment_data_factor must be at least 1")
used_instruments = set()
for mixup_list in self.instrument_mixups:
for n in mixup_list:
if n in used_instruments:
raise ValueError(f"Duplicate instrument name: {n}")
used_instruments.add(n)
@classmethod
def from_json(cls, path: str, cfg: VocabConfig):
with open(path, "r") as f:
config = json.load(f)
config["cfg"] = cfg
if "seed" not in config:
config["seed"] = random.randint(0, 2**32 - 1)
return cls(**config)
def get_augment_values(self, filename: str) -> Iterator[AugmentValues]:
# first yield default values
yield AugmentValues.default()
rng = random.Random(self.seed + hash(filename))
for _ in range(int(self.augment_data_factor - 1)):
# randomize order for each pool
randomized_pools = [list(pool) for pool in self._mixup_pools]
for pool in randomized_pools:
rng.shuffle(pool)
# distribute reassignments
instrument_bin_remap = {}
for i, pool in enumerate(randomized_pools):
for j, instrument in enumerate(pool):
instrument_bin_remap[instrument] = randomized_pools[i - 1][j]
yield AugmentValues(
instrument_bin_remap=instrument_bin_remap,
velocity_mod_factor=1.0 + rng.choice(self.velocity_mod_pct),
transpose_semitones=rng.choice(self.transpose_semitones),
time_stretch_factor=1.0 + rng.choice(self.time_stretch_pct),
)
@dataclass
class FilterConfig:
# Whether to filter out MIDI files with duplicate MD5 hashes.
deduplicate_md5: bool
# Minimum time delay between notes in a file before splitting into multiple documents.
piece_split_delay: float
# Minimum length of a piece in milliseconds.
min_piece_length: float
@classmethod
def from_json(cls, path: str):
with open(path, "r") as f:
config = json.load(f)
return cls(**config)
def mix_volume(velocity: int, volume: int, expression: int) -> float:
return velocity * (volume / 127.0) * (expression / 127.0)
def convert_midi_to_str(cfg: VocabConfig, filter_cfg: FilterConfig, mid: mido.MidiFile, augment: AugmentValues = None) -> List[str]:
utils = VocabUtils(cfg)
if augment is None:
augment = AugmentValues.default()
# filter out unknown meta messages before merge (https://github.com/mido/mido/pull/286)
for i in range(len(mid.tracks)):
mid.tracks[i] = [msg for msg in mid.tracks[i] if msg.type != "unknown_meta"]
if len(mid.tracks) > 1:
mid.tracks = [mido.merge_tracks(mid.tracks)]
delta_time_ms = 0.0
tempo = 500000
channel_program = {i: 0 for i in range(16)}
channel_volume = {i: 127 for i in range(16)}
channel_expression = {i: 127 for i in range(16)} # unlikely to be useful. expression usually modifies an already played note.
channel_notes = {i: {} for i in range(16)}
channel_pedal_on = {i: False for i in range(16)}
channel_pedal_events = {i: {} for i in range(16)} # {channel: {(note, program) -> True}}
started_flag = False
output_list = []
output = ["<start>"]
output_length_ms = 0.0
token_data_buffer: List[Tuple[int, int, int, float]] = [] # need to sort notes between wait tokens
def flush_token_data_buffer():
nonlocal token_data_buffer, output, cfg, utils, augment
token_data = [x for x in utils.prog_data_list_to_token_data_list(token_data_buffer)]
if augment.instrument_bin_remap or augment.transpose_semitones:
# TODO put transpose in a real function
raw_transpose = lambda bin, n: n + augment.transpose_semitones if bin != cfg._ch10_bin_int else n
octave_shift_if_oob = lambda n: n + 12 if n < 0 else n - 12 if n >= cfg.note_events else n
# TODO handle ranges beyond 12
#octave_shift_if_oob = lambda n: 0 if n < 0 else (n - cfg.note_events) % 12 + cfg.note_events if n >= cfg.note_events else n
transpose = lambda bin, n: octave_shift_if_oob(raw_transpose(bin, n))
token_data = [(augment.instrument_bin_remap.get(i, i), transpose(i, n), v) for i, n, v in token_data]
if cfg.do_token_sorting:
token_data = utils.sort_token_data(token_data)
if cfg.unrolled_tokens:
for t in token_data:
output += [utils.format_unrolled_instrument_bin(t[0]), utils.format_unrolled_note(t[1]), utils.format_unrolled_velocity(t[2])]
else:
output += [utils.format_note_token(*t) for t in token_data]
token_data_buffer = []
def consume_note_program_data(prog: int, chan: int, note: int, vel: float):
nonlocal output, output_length_ms, started_flag, delta_time_ms, cfg, utils, token_data_buffer
is_token_valid = utils.prog_data_to_token_data(prog, chan, note, vel) is not None
if not is_token_valid:
return
if delta_time_ms > filter_cfg.piece_split_delay * 1000.0:
# check if any notes are still held
silent = True
for channel in channel_notes.keys():
if len(channel_notes[channel]) > 0:
silent = False
break
if silent:
flush_token_data_buffer()
output.append("<end>")
if output_length_ms > filter_cfg.min_piece_length * 1000.0:
output_list.append(" ".join(output))
output = ["<start>"]
output_length_ms = 0.0
started_flag = False
if started_flag:
wait_tokens = utils.data_to_wait_tokens(delta_time_ms)
if len(wait_tokens) > 0:
flush_token_data_buffer()
output_length_ms += delta_time_ms
output += wait_tokens
delta_time_ms = 0.0
token_data_buffer.append((prog, chan, note, vel * augment.velocity_mod_factor))
started_flag = True
for msg in mid.tracks[0]:
time_ms = mido.tick2second(msg.time, mid.ticks_per_beat, tempo) * 1000.0
delta_time_ms += time_ms
t = msg.type
if msg.is_meta:
if t == "set_tempo":
tempo = msg.tempo * augment.time_stretch_factor
continue
def handle_note_off(ch, prog, n):
if channel_pedal_on[ch]:
channel_pedal_events[ch][(n, prog)] = True
else:
consume_note_program_data(prog, ch, n, 0)
if n in channel_notes[ch]:
del channel_notes[ch][n]
if t == "program_change":
channel_program[msg.channel] = msg.program
elif t == "note_on":
if msg.velocity == 0:
handle_note_off(msg.channel, channel_program[msg.channel], msg.note)
else:
if (msg.note, channel_program[msg.channel]) in channel_pedal_events[msg.channel]:
del channel_pedal_events[msg.channel][(msg.note, channel_program[msg.channel])]
consume_note_program_data(
channel_program[msg.channel],
msg.channel,
msg.note,
mix_volume(msg.velocity, channel_volume[msg.channel], channel_expression[msg.channel]),
)
channel_notes[msg.channel][msg.note] = True
elif t == "note_off":
handle_note_off(msg.channel, channel_program[msg.channel], msg.note)
elif t == "control_change":
if msg.control == 7 or msg.control == 39: # volume
channel_volume[msg.channel] = msg.value
elif msg.control == 11: # expression
channel_expression[msg.channel] = msg.value
elif msg.control == 64: # sustain pedal
channel_pedal_on[msg.channel] = msg.value >= 64
if not channel_pedal_on[msg.channel]:
for (note, program) in channel_pedal_events[msg.channel]:
handle_note_off(msg.channel, program, note)
channel_pedal_events[msg.channel] = {}
elif msg.control == 123: # all notes off
for channel in channel_notes.keys():
for note in list(channel_notes[channel]).copy():
handle_note_off(channel, channel_program[channel], note)
else:
pass
flush_token_data_buffer()
output.append("<end>")
if output_length_ms > filter_cfg.min_piece_length * 1000.0:
output_list.append(" ".join(output))
return output_list
def generate_program_change_messages(cfg: VocabConfig):
for bin_name, channel in cfg.bin_channel_map.items():
if channel == 9:
continue
program = cfg._instrument_names_str_to_int[cfg.bin_name_to_program_name[bin_name]]
yield mido.Message("program_change", program=program, time=0, channel=channel)
yield mido.Message("program_change", program=0, time=0, channel=9)
@dataclass
class DecodeState:
total_time: float # milliseconds
delta_accum: float # milliseconds
current_bin: int
current_note: int
active_notes: Dict[Tuple[int, int], float] # { (channel, note): time started, ... }
def token_to_midi_message(utils: VocabUtils, token: str, state: DecodeState, end_token_pause: float = 3.0) -> Iterator[Tuple[Optional[mido.Message], DecodeState]]:
if state is None:
state = DecodeState(total_time=0.0, delta_accum=0.0, current_bin=utils.cfg._short_instrument_names_str_to_int[utils.cfg.short_instr_bin_names[0]], current_note=0, active_notes={})
token = token.strip()
if not token:
yield None, state
return
if token == "<end>":
d = end_token_pause * 1000.0
state.delta_accum += d
state.total_time += d
if utils.cfg.decode_end_held_note_delay != 0.0:
# end held notes
for (channel, note), start_time in list(state.active_notes.items()).copy():
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
del state.active_notes[(channel, note)]
yield mido.Message("note_off", note=note, time=ticks, channel=channel), state
yield None, state
return
if token.startswith("<"):
yield None, state
return
if utils.cfg.unrolled_tokens:
if token[0] == "t":
d = utils.wait_token_to_delta(token)
state.delta_accum += d
state.total_time += d
elif token[0] == "n":
state.current_note = int(token[1:], base=16)
elif token[0] == "i":
state.current_bin = utils.cfg._short_instrument_names_str_to_int[token[1:]]
elif token[0] == "v":
current_velocity = utils.bin_to_velocity(int(token[1:], base=16))
channel = utils.cfg.bin_channel_map[utils.cfg.bin_instrument_names[state.current_bin]]
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
if current_velocity > 0:
yield mido.Message("note_on", note=state.current_note, velocity=current_velocity, time=ticks, channel=channel), state
else:
yield mido.Message("note_off", note=state.current_note, velocity=0, time=ticks, channel=channel), state
else:
if token[0] == "t" and token[1].isdigit(): # wait token
d = utils.wait_token_to_delta(token)
state.delta_accum += d
state.total_time += d
if utils.cfg.decode_end_held_note_delay != 0.0:
# remove notes that have been held for too long
for (channel, note), start_time in list(state.active_notes.items()).copy():
if state.total_time - start_time > utils.cfg.decode_end_held_note_delay * 1000.0:
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
del state.active_notes[(channel, note)]
yield mido.Message("note_off", note=note, time=ticks, channel=channel), state
return
else: # note token
bin, note, velocity = utils.note_token_to_data(token)
channel = utils.cfg.bin_channel_map[utils.cfg.bin_instrument_names[bin]]
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
if velocity > 0:
if utils.cfg.decode_fix_repeated_notes:
if (channel, note) in state.active_notes:
del state.active_notes[(channel, note)]
yield mido.Message("note_off", note=note, time=ticks, channel=channel), state
ticks = 0
state.active_notes[(channel, note)] = state.total_time
yield mido.Message("note_on", note=note, velocity=velocity, time=ticks, channel=channel), state
return
else:
if (channel, note) in state.active_notes:
del state.active_notes[(channel, note)]
yield mido.Message("note_off", note=note, time=ticks, channel=channel), state
return
yield None, state
def str_to_midi_messages(utils: VocabUtils, data: str) -> Iterator[mido.Message]:
state = None
for token in data.split(" "):
for msg, new_state in token_to_midi_message(utils, token, state):
state = new_state
if msg is not None:
yield msg
def convert_str_to_midi(cfg: VocabConfig, data: str, meta_text: str = "Generated by MIDI-LLM-tokenizer") -> mido.MidiFile:
utils = VocabUtils(cfg)
mid = mido.MidiFile()
track = mido.MidiTrack()
mid.tracks.append(track)
tempo = 500000
if meta_text:
track.append(mido.MetaMessage("text", text=meta_text, time=0))
track.append(mido.MetaMessage("set_tempo", tempo=tempo, time=0))
for msg in generate_program_change_messages(cfg):
track.append(msg)
#data = data.replace("<start>", "").replace("<end>", "").replace("<pad>", "").strip()
for msg in str_to_midi_messages(utils, data):
track.append(msg)
track.append(mido.MetaMessage("end_of_track", time=0))
return mid