ms1449 commited on
Commit
0263fca
·
verified ·
1 Parent(s): 64461ed

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Load the model and tokenizer
6
+ model_name = "gpt2-large"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name)
9
+
10
+ # Streamlit app
11
+ st.title("Blog Post Generator (GPT-2 Large)")
12
+
13
+ # Input area for the topic
14
+ topic = st.text_area("Enter the topic for your blog post:")
15
+
16
+ # Generate button
17
+ if st.button("Generate Blog Post"):
18
+ if topic:
19
+ # Prepare the prompt
20
+ prompt = f"Write a blog post about {topic}:\n\n"
21
+
22
+ # Tokenize the input
23
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
24
+
25
+ # Generate text
26
+ with torch.no_grad():
27
+ output = model.generate(
28
+ input_ids,
29
+ max_length=500,
30
+ num_return_sequences=1,
31
+ no_repeat_ngram_size=2,
32
+ top_k=50,
33
+ top_p=0.95,
34
+ temperature=0.7
35
+ )
36
+
37
+ # Decode the generated text
38
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
39
+
40
+ # Display the generated blog post
41
+ st.subheader("Generated Blog Post:")
42
+ st.write(generated_text)
43
+ else:
44
+ st.warning("Please enter a topic.")
45
+
46
+ # Add some information about the app
47
+ st.sidebar.header("About")
48
+ st.sidebar.info("This app uses the GPT-2 Large model to generate blog posts based on your input topic.")