Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
# Streamlit app
|
10 |
-
st.title("
|
11 |
|
12 |
# Input area for the topic
|
13 |
topic = st.text_area("Enter the topic for your blog post:")
|
@@ -22,10 +22,10 @@ if st.button("Generate Blog Post"):
|
|
22 |
inputs_encoded = tokenizer.encode(prompt, return_tensors="pt")
|
23 |
|
24 |
# Generate text
|
25 |
-
model_output = model.generate(inputs_encoded, max_new_tokens=
|
26 |
|
27 |
# Decode the output
|
28 |
-
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
29 |
|
30 |
# Display the generated blog post
|
31 |
st.subheader("Generated Blog Post:")
|
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
# Streamlit app
|
10 |
+
st.title("blog generator")
|
11 |
|
12 |
# Input area for the topic
|
13 |
topic = st.text_area("Enter the topic for your blog post:")
|
|
|
22 |
inputs_encoded = tokenizer.encode(prompt, return_tensors="pt")
|
23 |
|
24 |
# Generate text
|
25 |
+
model_output = model.generate(inputs_encoded, max_new_tokens=50, do_sample=True, temperature=0.7)
|
26 |
|
27 |
# Decode the output
|
28 |
+
output = tokenizer.decode(model_output[0], skip_special_tokens=True)
|
29 |
|
30 |
# Display the generated blog post
|
31 |
st.subheader("Generated Blog Post:")
|