import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer model_name = "gpt2-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Streamlit app st.title("blog generator") # Input area for the topic topic = st.text_area("Enter the topic for your blog post:") # Generate button if st.button("Generate Blog Post"): if topic: # Prepare the prompt prompt = f"Write a blog post about {topic}:\n\n" # Tokenize the input inputs_encoded = tokenizer.encode(prompt, return_tensors="pt") # Generate text model_output = model.generate(inputs_encoded, max_new_tokens=50, do_sample=True, temperature=0.7) # Decode the output output = tokenizer.decode(model_output[0], skip_special_tokens=True) # Display the generated blog post st.subheader("Generated Blog Post:") st.write(output) else: st.warning("no topic.")