Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,12 @@
|
|
1 |
-
|
2 |
-
import sys
|
3 |
-
os.system("pip install transformers==4.27.0")
|
4 |
-
os.system("pip install numpy==1.23")
|
5 |
-
from transformers import pipeline, WhisperModel, WhisperTokenizer, WhisperFeatureExtractor, AutoFeatureExtractor, AutoProcessor, WhisperConfig, WhisperProcessor, WhisperForConditionalGeneration
|
6 |
-
os.system("pip install jiwer")
|
7 |
-
from jiwer import wer
|
8 |
-
os.system("pip install datasets[audio]")
|
9 |
-
from evaluate import evaluator, load
|
10 |
-
from transformers import AutoModelForSequenceClassification, pipeline, BertTokenizer, AutoTokenizer, GPT2Model
|
11 |
-
from datasets import load_dataset, Audio, disable_caching, set_caching_enabled
|
12 |
-
import gradio as gr
|
13 |
-
import torch
|
14 |
-
from datasets import load_dataset
|
15 |
-
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
16 |
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
input_features = processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
|
24 |
-
batch["reference"] = processor.tokenizer._normalize(batch['category'])
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
transcription = processor.decode(predicted_ids)
|
29 |
-
batch["prediction"] = processor.tokenizer._normalize(transcription)
|
30 |
-
print(batch["prediction"])
|
31 |
-
return batch
|
32 |
-
|
33 |
-
result = librispeech_test_clean.map(map_to_pred)
|
34 |
-
|
35 |
-
wer = load("wer")
|
36 |
-
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
def transcribe(audio):
|
41 |
-
text = pipe(audio)["text"]
|
42 |
-
return text, test
|
43 |
-
|
44 |
-
iface = gr.Interface(
|
45 |
-
fn=transcribe,
|
46 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
47 |
-
outputs="text",
|
48 |
-
title="Whisper Small ESC50 Test",
|
49 |
-
)
|
50 |
-
|
51 |
-
iface.launch()
|
52 |
-
|
53 |
-
|
54 |
-
'''
|
55 |
-
print("check check")
|
56 |
-
print(inputs)
|
57 |
-
input_features = inputs.input_features
|
58 |
-
decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
59 |
-
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
60 |
-
list(last_hidden_state.shape)
|
61 |
-
print(list(last_hidden_state.shape))
|
62 |
-
'''
|
|
|
1 |
+
# TEST MODEL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
repository_id="mskov/roberta-base-toxicity"
|
6 |
+
classifier = pipeline('text-classification',repository_id)
|
7 |
|
8 |
+
text = "Kederis proclaims innocence Olympic champion Kostas Kederis today left hospital ahead of his date with IOC inquisitors claiming his innocence and vowing: quot;After the crucifixion comes the resurrection. quot; .."
|
9 |
+
result = classifier(text)
|
|
|
|
|
10 |
|
11 |
+
predicted_label = result[0]["label"]
|
12 |
+
print(f"Predicted label: {predicted_label}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|