Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from PIL import Image, ImageDraw | |
# Load pre-trained model and image processor | |
model_name = "facebook/detr-resnet-50" | |
model = DetrForObjectDetection.from_pretrained(model_name) | |
processor = DetrImageProcessor.from_pretrained(model_name) | |
# Define function for object detection | |
def detect_objects(image): | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Get predictions | |
target_sizes = [image.size[::-1]] # (height, width) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
# Draw bounding boxes on the image | |
draw = ImageDraw.Draw(image) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
draw.rectangle(box, outline="red", width=3) | |
label_name = model.config.id2label[label.item()] | |
draw.text((box[0], box[1]), f"{label_name} ({score:.2f})", fill="red") | |
return image | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Object Detection App", | |
description="Upload an image to detect objects using the DETR model." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |