Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 37,109 Bytes
64dd40c 2c63c2f b4966ee 78db81b bd1cf3d 78db81b 003d24d 2c63c2f 003d24d 4d67578 003d24d 2c63c2f 003d24d 2c63c2f 003d24d 4d67578 003d24d 2c63c2f a51beac 3ffdc42 a51beac 3ffdc42 2c63c2f c9eda65 2c63c2f c9eda65 2c63c2f a90dc55 bf18e02 c9eda65 216d974 2c63c2f c9eda65 2c63c2f c9eda65 2c63c2f c9eda65 2c63c2f a90dc55 2c63c2f e559e50 822c0b5 216d974 66b95b9 2c63c2f 66b95b9 64dd40c c9eda65 64dd40c a90dc55 64dd40c dda305a 216d974 e559e50 216d974 64dd40c 216d974 64dd40c bcadbe0 234d367 69d79aa e53fbc1 803802d 4d67578 234d367 66b95b9 2c63c2f 4d67578 2c63c2f 4d67578 6af949b f96a9c9 2c63c2f c00e4c9 2c63c2f bcadbe0 64dd40c bcadbe0 64dd40c bcadbe0 64dd40c 7d1d0b3 bcadbe0 64dd40c 4d67578 78db81b 2c63c2f 78db81b 2c63c2f 4d67578 2c63c2f 216d974 bcadbe0 2c63c2f 78db81b 234d367 78db81b 003d24d 4d67578 1bd4020 003d24d 78db81b 0d4db15 4d67578 bcadbe0 4d67578 78db81b 0d4db15 6af949b 003d24d 2c63c2f 3ffdc42 64dd40c 3ffdc42 2c63c2f bd1cf3d 3ffdc42 dbfa15a 3ffdc42 003d24d 17e0108 003d24d 6af949b 3ffdc42 003d24d bcadbe0 0d4db15 3ffdc42 78db81b 3ffdc42 b4966ee 3ffdc42 003d24d dbfa15a 4d67578 4af9e8d 2c63c2f dbfa15a b4966ee 003d24d dbfa15a 003d24d 17e0108 003d24d 3ffdc42 5f60817 3ffdc42 dbfa15a ea7f3f0 64dd40c dbfa15a 3ffdc42 17e0108 3ffdc42 2c63c2f 3ffdc42 0d4db15 dbfa15a ea7f3f0 dbfa15a 0d4db15 003d24d 17e0108 0d4db15 3ffdc42 2c63c2f 0d4db15 3ffdc42 003d24d 0d4db15 dbfa15a ea7f3f0 dbfa15a 0d4db15 17e0108 0d4db15 2c63c2f 003d24d 3ffdc42 003d24d 0d4db15 4d67578 ef195e8 4d67578 3ffdc42 dbfa15a 3ffdc42 17e0108 3ffdc42 2c63c2f 3ffdc42 0d4db15 bc83dc3 dbfa15a 0d4db15 3ffdc42 17e0108 0d4db15 2c63c2f 003d24d 3ffdc42 003d24d 0d4db15 dbfa15a 035c9c8 dbfa15a 78db81b 0d4db15 3ffdc42 17e0108 0d4db15 bc83dc3 2c63c2f 0d4db15 003d24d 3ffdc42 003d24d 0d4db15 dbfa15a 0d4db15 3ffdc42 17e0108 0d4db15 2c63c2f 0d4db15 2c63c2f 003d24d 3ffdc42 003d24d 0d4db15 dbfa15a 0d4db15 17e0108 0d4db15 2c63c2f 3ffdc42 0d4db15 dbfa15a 0d4db15 17e0108 0d4db15 2c63c2f 003d24d 3ffdc42 003d24d 88c25a0 4d67578 88c25a0 2a75cd8 dbfa15a 3ffdc42 4d67578 17e0108 3ffdc42 1bd4020 3ffdc42 b4966ee 2e5b810 b4966ee 3ffdc42 17e0108 3ffdc42 1bd4020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
import json
from datasets import load_dataset
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
TASKS = [
"BitextMining",
"Classification",
"Clustering",
"PairClassification",
"Reranking",
"Retrieval",
"STS",
"Summarization",
]
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification (en)",
"AmazonPolarityClassification",
"AmazonReviewsClassification (en)",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification (en)",
"MassiveScenarioClassification (en)",
"MTOPDomainClassification (en)",
"MTOPIntentClassification (en)",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_CLUSTERING_DE = [
"BlurbsClusteringP2P",
"BlurbsClusteringS2S",
"TenKGnadClusteringP2P",
"TenKGnadClusteringS2S",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
"ClimateFEVER",
"CQADupstackRetrieval",
"DBPedia",
"FEVER",
"FiQA2018",
"HotpotQA",
"MSMARCO",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + ["CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval"
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17 (en-en)",
"STS22 (en)",
"STSBenchmark",
]
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
TASK_LIST_SUMMARIZATION = [
"SummEval",
]
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
TASK_TO_METRIC = {
"BitextMining": "f1",
"Clustering": "v_measure",
"Clustering (DE)": "v_measure",
"Classification": "accuracy",
"PairClassification": "cos_sim_ap",
"Reranking": "map",
"Retrieval": "ndcg_at_10",
"STS": "cos_sim_spearman",
"Summarization": "cos_sim_spearman",
}
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return (
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
)
# Models without metadata, thus we cannot fetch their results naturally
EXTERNAL_MODELS = [
"LASER2",
"LaBSE",
"all-MiniLM-L12-v2",
"all-MiniLM-L6-v2",
"all-mpnet-base-v2",
"allenai-specter",
"bert-base-uncased",
"contriever-base-msmarco",
"cross-en-de-roberta-sentence-transformer",
"gbert-base",
"gbert-large",
"gelectra-base",
"gelectra-large",
"gottbert-base",
"glove.6B.300d",
"gtr-t5-base",
"gtr-t5-large",
"gtr-t5-xl",
"gtr-t5-xxl",
"komninos",
"msmarco-bert-co-condensor",
"paraphrase-multilingual-MiniLM-L12-v2",
"paraphrase-multilingual-mpnet-base-v2",
"sentence-t5-base",
"sentence-t5-large",
"sentence-t5-xl",
"sentence-t5-xxl",
"sgpt-bloom-1b7-nli",
"sgpt-bloom-7b1-msmarco",
"sup-simcse-bert-base-uncased",
"text-embedding-ada-002",
"text-similarity-ada-001",
"text-similarity-babbage-001",
"text-similarity-curie-001",
"text-similarity-davinci-001",
"text-search-ada-doc-001",
"text-search-ada-001",
"text-search-babbage-001",
"text-search-curie-001",
"text-search-davinci-001",
"unsup-simcse-bert-base-uncased",
"use-cmlm-multilingual",
"xlm-roberta-large",
]
EXTERNAL_MODEL_TO_LINK = {
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large",
"use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
"gbert-base": "https://huggingface.co/deepset/gbert-base",
"gbert-large": "https://huggingface.co/deepset/gbert-large",
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
"LASER2": "https://github.com/facebookresearch/LASER",
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-similarity-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-similarity-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-search-ada-doc-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-search-ada-query-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-search-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
}
EXTERNAL_MODEL_TO_DIM = {
"xlm-roberta-large": 1024,
"use-cmlm-multilingual": 768,
"gottbert-base": 768,
"cross-en-de-roberta-sentence-transformer": 768,
"gbert-base": 768,
"gbert-large": 1024,
"gelectra-base": 768,
"gelectra-large": 1024,
"gottbert-base": 768,
"LASER2": 1024,
"LaBSE": 768,
"all-MiniLM-L12-v2": 384,
"all-MiniLM-L6-v2": 384,
"all-mpnet-base-v2": 768,
"allenai-specter": 768,
"bert-base-uncased": 768,
"contriever-base-msmarco": 768,
"glove.6B.300d": 300,
"gtr-t5-base": 768,
"gtr-t5-large": 768,
"gtr-t5-xl": 768,
"gtr-t5-xxl": 768,
"komninos": 300,
"msmarco-bert-co-condensor": 768,
"paraphrase-multilingual-MiniLM-L12-v2": 384,
"paraphrase-multilingual-mpnet-base-v2": 768,
"sentence-t5-base": 768,
"sentence-t5-large": 768,
"sentence-t5-xl": 768,
"sentence-t5-xxl": 768,
"sup-simcse-bert-base-uncased": 768,
"text-embedding-ada-002": 1536,
"text-similarity-ada-001": 1024,
"text-similarity-babbage-001": 2048,
"text-similarity-curie-001": 4096,
"text-similarity-davinci-001": 12288,
"text-search-ada-doc-001": 1024,
"text-search-ada-query-001": 1024,
"text-search-ada-001": 1024,
"text-search-babbage-001": 2048,
"text-search-curie-001": 4096,
"text-search-davinci-001": 12288,
"unsup-simcse-bert-base-uncased": 768,
}
EXTERNAL_MODEL_TO_SEQLEN = {
"xlm-roberta-large": 514,
"use-cmlm-multilingual": 512,
"gottbert-base": 512,
"cross-en-de-roberta-sentence-transformer": 514,
"gbert-base": 512,
"gbert-large": 512,
"gelectra-base": 512,
"gelectra-large": 512,
"gottbert-base": 512,
"LASER2": "N/A",
"LaBSE": 512,
"all-MiniLM-L12-v2": 512,
"all-MiniLM-L6-v2": 512,
"all-mpnet-base-v2": 514,
"allenai-specter": 512,
"bert-base-uncased": 512,
"contriever-base-msmarco": 512,
"glove.6B.300d": "N/A",
"gtr-t5-base": 512,
"gtr-t5-large": 512,
"gtr-t5-xl": 512,
"gtr-t5-xxl": 512,
"komninos": "N/A",
"msmarco-bert-co-condensor": 512,
"paraphrase-multilingual-MiniLM-L12-v2": 512,
"paraphrase-multilingual-mpnet-base-v2": 514,
"sentence-t5-base": 512,
"sentence-t5-large": 512,
"sentence-t5-xl": 512,
"sentence-t5-xxl": 512,
"sup-simcse-bert-base-uncased": 512,
"text-embedding-ada-002": 8191,
"text-similarity-ada-001": 2046,
"text-similarity-babbage-001": 2046,
"text-similarity-curie-001": 2046,
"text-similarity-davinci-001": 2046,
"text-search-ada-doc-001": 2046,
"text-search-ada-query-001": 2046,
"text-search-ada-001": 2046,
"text-search-babbage-001": 2046,
"text-search-curie-001": 2046,
"text-search-davinci-001": 2046,
"unsup-simcse-bert-base-uncased": 512,
}
MODELS_TO_SKIP = {
"baseplate/instructor-large-1", # Duplicate
"radames/e5-large", # Duplicate
"gentlebowl/instructor-large-safetensors", # Duplicate
"Consensus/instructor-base", # Duplicate
"GovCompete/instructor-xl", # Duplicate
"GovCompete/e5-large-v2", # Duplicate
"t12e/instructor-base", # Duplicate
}
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
def add_lang(examples):
if not(examples["eval_language"]):
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
else:
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
return examples
def add_task(examples):
# Could be added to the dataset loading script instead
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM:
examples["mteb_task"] = "Classification"
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
examples["mteb_task"] = "Clustering"
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION:
examples["mteb_task"] = "PairClassification"
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING:
examples["mteb_task"] = "Reranking"
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM:
examples["mteb_task"] = "Retrieval"
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM:
examples["mteb_task"] = "STS"
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
examples["mteb_task"] = "Summarization"
else:
examples["mteb_task"] = "BitextMining"
return examples
for model in EXTERNAL_MODELS:
ds = load_dataset("mteb/results", model)#, download_mode='force_redownload', verification_mode="no_checks")
# For local debugging:
#, download_mode='force_redownload', verification_mode="no_checks")
ds = ds.map(add_lang)
ds = ds.map(add_task)
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
# For now only one metric per task - Could add more metrics lateron
for task, metric in TASK_TO_METRIC.items():
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
def get_dim_seq(model):
filenames = [sib.rfilename for sib in model.siblings]
dim, seq = "", ""
if "1_Pooling/config.json" in filenames:
st_config_path = hf_hub_download(model.modelId, filename="1_Pooling/config.json")
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
elif "2_Pooling/config.json" in filenames:
st_config_path = hf_hub_download(model.modelId, filename="2_Pooling/config.json")
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
if "config.json" in filenames:
config_path = hf_hub_download(model.modelId, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
return dim, seq
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=False, task_to_metric=TASK_TO_METRIC):
api = HfApi()
models = api.list_models(filter="mteb")
# Initialize list to models that we cannot fetch metadata from
df_list = []
for model in EXTERNAL_MODEL_RESULTS:
results_list = [res for task in tasks for res in EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]]
if len(datasets) > 0:
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
elif langs:
# Would be cleaner to rely on an extra language column instead
langs_format = [f"({lang})" for lang in langs]
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
else:
res = {k: v for d in results_list for k, v in d.items()}
# Model & at least one result
if len(res) > 1:
if add_emb_dim:
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
res["Sequence Length"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
df_list.append(res)
for model in models:
if model.modelId in MODELS_TO_SKIP: continue
readme_path = hf_hub_download(model.modelId, filename="README.md")
meta = metadata_load(readme_path)
# meta['model-index'][0]["results"] is list of elements like:
# {
# "task": {"type": "Classification"},
# "dataset": {
# "type": "mteb/amazon_massive_intent",
# "name": "MTEB MassiveIntentClassification (nb)",
# "config": "nb",
# "split": "test",
# },
# "metrics": [
# {"type": "accuracy", "value": 39.81506388702084},
# {"type": "f1", "value": 38.809586587791664},
# ],
# },
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
if len(datasets) > 0:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
elif langs:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
else:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
out = {k: v for d in out for k, v in d.items()}
out["Model"] = make_clickable_model(model.modelId)
# Model & at least one result
if len(out) > 1:
if add_emb_dim:
out["Embedding Dimensions"], out["Sequence Length"] = get_dim_seq(model)
df_list.append(out)
df = pd.DataFrame(df_list)
# Put 'Model' column first
cols = sorted(list(df.columns))
cols.insert(0, cols.pop(cols.index("Model")))
df = df[cols]
if fillna:
df.fillna("", inplace=True)
return df
def get_mteb_average():
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION, NUM_SCORES
DATA_OVERALL = get_mteb_data(
tasks=[
"Classification",
"Clustering",
"PairClassification",
"Reranking",
"Retrieval",
"STS",
"Summarization",
],
langs=["en", "en-en"],
fillna=False,
add_emb_dim=True,
)
# Approximation (Missing Bitext Mining & including some nans)
NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
# Debugging:
# DATA_OVERALL.to_csv("overall.csv")
DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
DATA_OVERALL.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", DATA_OVERALL[TASK_LIST_CLUSTERING].mean(axis=1, skipna=False))
DATA_OVERALL.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_PAIR_CLASSIFICATION].mean(axis=1, skipna=False))
DATA_OVERALL.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", DATA_OVERALL[TASK_LIST_RERANKING].mean(axis=1, skipna=False))
DATA_OVERALL.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", DATA_OVERALL[TASK_LIST_RETRIEVAL].mean(axis=1, skipna=False))
DATA_OVERALL.insert(7, f"STS Average ({len(TASK_LIST_STS)} datasets)", DATA_OVERALL[TASK_LIST_STS].mean(axis=1, skipna=False))
DATA_OVERALL.insert(8, f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)", DATA_OVERALL[TASK_LIST_SUMMARIZATION].mean(axis=1, skipna=False))
DATA_OVERALL.sort_values(f"Average ({len(TASK_LIST_EN)} datasets)", ascending=False, inplace=True)
# Start ranking from 1
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
DATA_OVERALL = DATA_OVERALL.round(2)
# Fill NaN after averaging
DATA_OVERALL.fillna("", inplace=True)
DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
DATA_RERANKING = DATA_OVERALL[["Model"] + TASK_LIST_RERANKING]
DATA_RETRIEVAL = DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL]
DATA_STS_EN = DATA_OVERALL[["Model"] + TASK_LIST_STS]
DATA_SUMMARIZATION = DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION]
DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
return DATA_OVERALL
get_mteb_average()
block = gr.Blocks()
with block:
gr.Markdown(f"""
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> ๐ค
- **Total Datasets**: 62
- **Total Languages**: 112
- **Total Scores**: >{NUM_SCORES}
- **Total Models**: {len(DATA_OVERALL)}
""")
with gr.Tabs():
with gr.TabItem("Overall"):
with gr.Row():
gr.Markdown("""
**Overall MTEB English leaderboard ๐ฎ**
- **Metric:** Various, refer to task tabs
- **Languages:** English, refer to task tabs for others
""")
with gr.Row():
data_overall = gr.components.Dataframe(
DATA_OVERALL,
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL.columns),
type="pandas",
wrap=True,
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(get_mteb_average, inputs=None, outputs=data_overall)
with gr.TabItem("Bitext Mining"):
with gr.Row():
gr.Markdown("""
**Bitext Mining Leaderboard ๐**
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
- **Languages:** 117
""")
with gr.Row():
data_bitext_mining = gr.components.Dataframe(
datatype=["markdown"] + ["number"] * 500, # hack when we don't know how many columns
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_bitext_mining = gr.Variable(value=["BitextMining"])
data_run.click(
get_mteb_data,
inputs=[task_bitext_mining],
outputs=data_bitext_mining,
)
with gr.TabItem("Classification"):
with gr.TabItem("English"):
with gr.Row():
gr.Markdown("""
**Classification Leaderboard โค๏ธ**
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
- **Languages:** English
""")
with gr.Row():
data_classification_en = gr.components.Dataframe(
DATA_CLASSIFICATION_EN,
datatype=["markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
type="pandas",
)
with gr.Row():
data_run_classification_en = gr.Button("Refresh")
task_classification_en = gr.Variable(value=["Classification"])
lang_classification_en = gr.Variable(value=["en"])
data_run_classification_en.click(
get_mteb_data,
inputs=[
task_classification_en,
lang_classification_en,
],
outputs=data_classification_en,
)
with gr.TabItem("Multilingual"):
with gr.Row():
gr.Markdown("""
**Classification Multilingual Leaderboard ๐๐๐**
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
- **Languages:** 51
""")
with gr.Row():
data_classification = gr.components.Dataframe(
datatype=["markdown"] + ["number"] * 200, # hack when we don't know how many columns
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_classification = gr.Variable(value=["Classification"])
data_run.click(
get_mteb_data,
inputs=[task_classification],
outputs=data_classification,
)
with gr.TabItem("Clustering"):
with gr.TabItem("English"):
with gr.Row():
gr.Markdown("""
**Clustering Leaderboard โจ**
- **Metric:** Validity Measure (v_measure)
- **Languages:** English
""")
with gr.Row():
data_clustering = gr.components.Dataframe(
DATA_CLUSTERING,
datatype=["markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_clustering = gr.Variable(value=["Clustering"])
empty = gr.Variable(value=[])
datasets_clustering = gr.Variable(value=TASK_LIST_CLUSTERING)
data_run.click(
get_mteb_data,
inputs=[task_clustering, empty, datasets_clustering],
outputs=data_clustering,
)
with gr.TabItem("German"):
with gr.Row():
gr.Markdown("""
**Clustering Leaderboard โจ๐ฉ๐ช**
- **Metric:** Validity Measure (v_measure)
- **Languages:** German
- **Credits:** [Silvan](https://github.com/slvnwhrl)
""")
with gr.Row():
data_clustering_de = gr.components.Dataframe(
datatype=["markdown"] + ["number"] * len(TASK_LIST_CLUSTERING_DE),
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_clustering_de = gr.Variable(value=["Clustering"])
empty_de = gr.Variable(value=[])
datasets_clustering_de = gr.Variable(value=TASK_LIST_CLUSTERING_DE)
data_run.click(
get_mteb_data,
inputs=[task_clustering_de, empty_de, datasets_clustering_de],
outputs=data_clustering_de,
)
with gr.TabItem("Pair Classification"):
with gr.Row():
gr.Markdown("""
**Pair Classification Leaderboard ๐ญ**
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
- **Languages:** English
""")
with gr.Row():
data_pair_classification = gr.components.Dataframe(
DATA_PAIR_CLASSIFICATION,
datatype=["markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_pair_classification = gr.Variable(value=["PairClassification"])
data_run.click(
get_mteb_data,
inputs=[task_pair_classification],
outputs=data_pair_classification,
)
with gr.TabItem("Retrieval"):
with gr.Row():
gr.Markdown("""
**Retrieval Leaderboard ๐**
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
- **Languages:** English
""")
with gr.Row():
data_retrieval = gr.components.Dataframe(
DATA_RETRIEVAL,
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
datatype=["markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_retrieval = gr.Variable(value=["Retrieval"])
data_run.click(
get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
)
with gr.TabItem("Reranking"):
with gr.Row():
gr.Markdown("""
**Reranking Leaderboard ๐ฅ**
- **Metric:** Mean Average Precision (MAP)
- **Languages:** English
""")
with gr.Row():
data_reranking = gr.components.Dataframe(
DATA_RERANKING,
datatype=["markdown"] + ["number"] * len(DATA_RERANKING.columns),
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_reranking = gr.Variable(value=["Reranking"])
metric_reranking = gr.Variable(value="map")
data_run.click(
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
)
with gr.TabItem("STS"):
with gr.TabItem("English"):
with gr.Row():
gr.Markdown("""
**STS Leaderboard ๐ค**
- **Metric:** Spearman correlation based on cosine similarity
- **Languages:** English
""")
with gr.Row():
data_sts_en = gr.components.Dataframe(
DATA_STS_EN,
datatype=["markdown"] + ["number"] * len(DATA_STS_EN.columns),
type="pandas",
)
with gr.Row():
data_run_sts_en = gr.Button("Refresh")
task_sts_en = gr.Variable(value=["STS"])
lang_sts_en = gr.Variable(value=["en", "en-en"])
data_run_sts_en.click(
get_mteb_data,
inputs=[task_sts_en, lang_sts_en],
outputs=data_sts_en,
)
with gr.TabItem("Multilingual"):
with gr.Row():
gr.Markdown("""
**STS Multilingual Leaderboard ๐ฝ**
- **Metric:** Spearman correlation based on cosine similarity
- **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish
""")
with gr.Row():
data_sts = gr.components.Dataframe(
datatype=["markdown"] + ["number"] * 100, # hack when we don't know how many columns
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_sts = gr.Variable(value=["STS"])
data_run.click(get_mteb_data, inputs=[task_sts], outputs=data_sts)
with gr.TabItem("Summarization"):
with gr.Row():
gr.Markdown("""
**Summarization Leaderboard ๐**
- **Metric:** Spearman correlation based on cosine similarity
- **Languages:** English
""")
with gr.Row():
data_summarization = gr.components.Dataframe(
DATA_SUMMARIZATION,
datatype=["markdown"] + ["number"] * 2,
type="pandas",
)
with gr.Row():
data_run = gr.Button("Refresh")
task_summarization = gr.Variable(value=["Summarization"])
data_run.click(
get_mteb_data,
inputs=[task_summarization],
outputs=data_summarization,
)
gr.Markdown(r"""
Made with โค๏ธ for NLP. If this work is useful to you, please consider citing:
```bibtex
@article{muennighoff2022mteb,
doi = {10.48550/ARXIV.2210.07316},
url = {https://arxiv.org/abs/2210.07316},
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
}
```
""")
# Running the function on page load in addition to when the button is clicked
# This is optional - If deactivated the data created loaded at "Build time" is shown like for Overall tab
block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
block.load(get_mteb_data, inputs=[task_classification_en, lang_classification_en], outputs=data_classification_en)
block.load(get_mteb_data, inputs=[task_classification], outputs=data_classification)
block.load(get_mteb_data, inputs=[task_clustering, empty, datasets_clustering], outputs=data_clustering)
block.load(get_mteb_data, inputs=[task_clustering_de, empty_de, datasets_clustering_de], outputs=data_clustering_de)
block.load(get_mteb_data, inputs=[task_pair_classification], outputs=data_pair_classification)
block.load(get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval)
block.load(get_mteb_data, inputs=[task_reranking], outputs=data_reranking)
block.load(get_mteb_data, inputs=[task_sts_en, lang_sts_en], outputs=data_sts_en)
block.load(get_mteb_data, inputs=[task_sts], outputs=data_sts)
block.load(get_mteb_data, inputs=[task_summarization], outputs=data_summarization)
block.queue(concurrency_count=40, max_size=10)
block.launch()
# Possible changes:
# Could check if tasks are valid (Currently users could just invent new tasks - similar for languages)
# Could make it load in the background without the Gradio logo closer to the Deep RL space
# Could add graphs / other visual content
# Could add verification marks
# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/
|