tomaarsen HF staff commited on
Commit
8168003
·
verified ·
1 Parent(s): cf49ed7

Allow setting seq_len/size/dim for gated models (#121)

Browse files

- Allow setting seq_len/size/dim for gated models (9bce65fefb038595697fa696df21aec9dd01bc23)
- Update edge case where model is not specified (a9153ccd42b6aeb93440d6b1623876d572deb7ec)
- Linq-Embed-Mistral is now integrated with Sentence Transformers (0769964bc567fef19241187556321dca5578ef44)
- Clarify math for memory usage (d8b28e21231e4146fda8321f753e80a172cfd169)
- Merge commit 'refs/pr/121' of https://huggingface.co/spaces/mteb/leaderboard into pr/121 (53b23bde6c332982e28479517b67c23d903b966e)

Files changed (3) hide show
  1. app.py +16 -3
  2. model_meta.yaml +16 -0
  3. utils/model_size.py +1 -1
app.py CHANGED
@@ -143,6 +143,10 @@ def get_dim_seq_size(model):
143
  if not dim:
144
  dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
145
  seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
 
 
 
 
146
  # Get model file size without downloading. Parameters in million parameters and memory in GB
147
  parameters, memory = get_model_parameters_memory(model)
148
  return dim, seq, parameters, memory
@@ -244,13 +248,22 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
244
  # Model & at least one result
245
  if len(out) > 1:
246
  if add_emb_dim:
 
247
  try:
248
- # Fails on gated repos, so we only include scores for them
249
  if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh:
250
  MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
251
- out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
252
  except:
253
- MODEL_INFOS[model.modelId]["dim_seq_size"] = "", "", "", ""
 
 
 
 
 
 
 
 
 
 
254
  df_list.append(out)
255
  if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
256
  SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
 
143
  if not dim:
144
  dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
145
  seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
146
+
147
+ if dim == "" or seq == "":
148
+ raise Exception(f"Could not find dim or seq for model {model.modelId}")
149
+
150
  # Get model file size without downloading. Parameters in million parameters and memory in GB
151
  parameters, memory = get_model_parameters_memory(model)
152
  return dim, seq, parameters, memory
 
248
  # Model & at least one result
249
  if len(out) > 1:
250
  if add_emb_dim:
251
+ # The except clause triggers on gated repos, we can use external metadata for those
252
  try:
 
253
  if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh:
254
  MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
 
255
  except:
256
+ name_without_org = model.modelId.split("/")[-1]
257
+ # EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage
258
+ # we multiply by 1e6 to get just the number of parameters, then by 4 to get the number of bytes
259
+ # given fp32 precision (4 bytes per float), then divide by 1024**3 to get the number of GB
260
+ MODEL_INFOS[model.modelId]["dim_seq_size"] = (
261
+ EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
262
+ EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
263
+ EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
264
+ round(EXTERNAL_MODEL_TO_SIZE[name_without_org] * 1e6 * 4 / 1024**3, 2) if name_without_org in EXTERNAL_MODEL_TO_SIZE else "",
265
+ )
266
+ out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
267
  df_list.append(out)
268
  if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
269
  SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
model_meta.yaml CHANGED
@@ -1211,6 +1211,22 @@ model_meta:
1211
  is_external: true
1212
  is_proprietary: false
1213
  is_sentence_transformers_compatible: true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214
  models_to_skip:
1215
  - michaelfeil/ct2fast-e5-large-v2
1216
  - McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-unsup-simcse
 
1211
  is_external: true
1212
  is_proprietary: false
1213
  is_sentence_transformers_compatible: true
1214
+ NV-Embed-v1:
1215
+ link: https://huggingface.co/nvidia/NV-Embed-v1
1216
+ seq_len: 32768
1217
+ size: 7851
1218
+ dim: 4096
1219
+ is_external: false
1220
+ is_proprietary: false
1221
+ is_sentence_transformers_compatible: false
1222
+ Linq-Embed-Mistral:
1223
+ link: https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral
1224
+ seq_len: 32768
1225
+ size: 7111
1226
+ dim: 4096
1227
+ is_external: false
1228
+ is_proprietary: false
1229
+ is_sentence_transformers_compatible: true
1230
  models_to_skip:
1231
  - michaelfeil/ct2fast-e5-large-v2
1232
  - McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-unsup-simcse
utils/model_size.py CHANGED
@@ -40,4 +40,4 @@ def get_model_parameters_memory(model_info: ModelInfo):
40
  if ("metadata" in size) and ("total_size" in size["metadata"]):
41
  return round(size["metadata"]["total_size"] / bytes_per_param / 1e6), round(size["metadata"]["total_size"] / 1024**3, 2)
42
 
43
- return None, None
 
40
  if ("metadata" in size) and ("total_size" in size["metadata"]):
41
  return round(size["metadata"]["total_size"] / bytes_per_param / 1e6), round(size["metadata"]["total_size"] / 1024**3, 2)
42
 
43
+ raise Exception(f"Could not find the model parameters for {model_info.id}")