File size: 4,299 Bytes
7ed8d70
 
8c0b937
7ed8d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0b937
7ed8d70
 
8c0b937
7ed8d70
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from typing import List, Dict, Any

import gradio as gr
import spaces
import torch
import numpy as np

# For the dense embedding
from sentence_transformers import SentenceTransformer

# For SPLADE sparse embedding
from transformers import AutoTokenizer, AutoModelForMaskedLM

# For ColBERT
from transformers import AutoModel, AutoTokenizer


############################
# 1) Load models & tokenizers
############################

# 1A) Dense embedding model (Nomic)
dense_model = SentenceTransformer(
    "nomic-ai/nomic-embed-text-v1.5",
    trust_remote_code=True,
    device="cuda"  # Force GPU if available
)

# 1B) SPLADE for sparse embeddings
#    Using "naver/splade-cocondenser-ensembledistil" as an example
sparse_tokenizer = AutoTokenizer.from_pretrained("naver/splade-cocondenser-ensembledistil")
sparse_model = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-ensembledistil")
sparse_model.eval()
sparse_model.to("cuda")  # move to GPU

# 1C) ColBERT model
colbert_tokenizer = AutoTokenizer.from_pretrained("colbert-ir/colbertv2.0")
colbert_model = AutoModel.from_pretrained("colbert-ir/colbertv2.0")
colbert_model.eval()
colbert_model.to("cuda")


############################
# 2) Helper functions
############################

def get_dense_embedding(text: str) -> List[float]:
    """
    Use SentenceTransformer to get a single dense vector.
    """
    # model.encode returns a NumPy array of shape (dim,)
    emb = dense_model.encode(text)
    return emb.tolist()  # convert to Python list for JSON serialization


def get_splade_sparse_embedding(text: str) -> List[float]:
    """
    Compute a sparse embedding with SPLADE (max pooling over tokens).
    Returns a large vector ~ vocabulary size, e.g. 30k+ dims.
    """
    inputs = sparse_tokenizer(
        text,
        return_tensors="pt",
        truncation=True,
        max_length=256
    )
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    with torch.no_grad():
        # shape: [batch=1, seq_len, vocab_size]
        logits = sparse_model(**inputs).logits.squeeze(0)  # [seq_len, vocab_size]

    # SPLADE approach for query-like encoding (max over sequence dimension):
    # For doc encoding, one might do sum instead of max; usage can differ.
    # We'll do max pooling: log(1 + ReLU(logits)) -> max over seq_len
    sparse_emb = torch.log1p(torch.relu(logits)).max(dim=0).values
    # Convert to CPU list
    return sparse_emb.cpu().numpy().tolist()


def get_colbert_embedding(text: str) -> List[List[float]]:
    """
    Generate token-level embeddings via ColBERT.
    Returns a list of [token_dim] for each token in the sequence.
    """
    inputs = colbert_tokenizer(
        text,
        return_tensors="pt",
        truncation=True,
        max_length=180
    )
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    with torch.no_grad():
        outputs = colbert_model(**inputs)
        # outputs.last_hidden_state: [1, seq_len, hidden_dim]
        emb = outputs.last_hidden_state.squeeze(0)  # shape: [seq_len, hidden_dim]

    # Convert each token embedding to a list
    return emb.cpu().numpy().tolist()


############################
# 3) The main embedding function
############################

@spaces.GPU
def embed(document: str) -> Dict[str, Any]:
    """
    Single function that returns dense, sparse (SPLADE), and ColBERT embeddings.
    Decorated with @spaces.GPU for ephemeral GPU usage in Hugging Face Spaces.
    """
    dense_emb = get_dense_embedding(document)
    sparse_emb = get_splade_sparse_embedding(document)
    colbert_emb = get_colbert_embedding(document)

    return {
        "dense_embedding": dense_emb,
        "sparse_embedding": sparse_emb,
        "colbert_embedding": colbert_emb
    }


############################
# 4) Gradio App
############################

with gr.Blocks() as app:
    gr.Markdown("# Multi-Embedding Generator (Dense, SPLADE, ColBERT)")

    text_input = gr.Textbox(label="Enter text to embed")
    output = gr.JSON(label="Embeddings")

    # On submit, call embed() -> returns JSON
    text_input.submit(embed, inputs=text_input, outputs=output)

if __name__ == "__main__":
    # queue() is optional but useful for concurrency
    app.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860)