from typing import List, Dict, Any import gradio as gr import spaces import torch import numpy as np # For the dense embedding from sentence_transformers import SentenceTransformer # For SPLADE sparse embedding from transformers import AutoTokenizer, AutoModelForMaskedLM # For ColBERT from transformers import AutoModel, AutoTokenizer ############################ # 1) Load models & tokenizers ############################ # 1A) Dense embedding model (Nomic) dense_model = SentenceTransformer( "nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True, device="cuda" # Force GPU if available ) # 1B) SPLADE for sparse embeddings # Using "naver/splade-cocondenser-ensembledistil" as an example sparse_tokenizer = AutoTokenizer.from_pretrained("naver/splade-cocondenser-ensembledistil") sparse_model = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-ensembledistil") sparse_model.eval() sparse_model.to("cuda") # move to GPU # 1C) ColBERT model colbert_tokenizer = AutoTokenizer.from_pretrained("colbert-ir/colbertv2.0") colbert_model = AutoModel.from_pretrained("colbert-ir/colbertv2.0") colbert_model.eval() colbert_model.to("cuda") ############################ # 2) Helper functions ############################ def get_dense_embedding(text: str) -> List[float]: """ Use SentenceTransformer to get a single dense vector. """ # model.encode returns a NumPy array of shape (dim,) emb = dense_model.encode(text) return emb.tolist() # convert to Python list for JSON serialization def get_splade_sparse_embedding(text: str) -> List[float]: """ Compute a sparse embedding with SPLADE (max pooling over tokens). Returns a large vector ~ vocabulary size, e.g. 30k+ dims. """ inputs = sparse_tokenizer( text, return_tensors="pt", truncation=True, max_length=256 ) inputs = {k: v.to("cuda") for k, v in inputs.items()} with torch.no_grad(): # shape: [batch=1, seq_len, vocab_size] logits = sparse_model(**inputs).logits.squeeze(0) # [seq_len, vocab_size] # SPLADE approach for query-like encoding (max over sequence dimension): # For doc encoding, one might do sum instead of max; usage can differ. # We'll do max pooling: log(1 + ReLU(logits)) -> max over seq_len sparse_emb = torch.log1p(torch.relu(logits)).max(dim=0).values # Convert to CPU list return sparse_emb.cpu().numpy().tolist() def get_colbert_embedding(text: str) -> List[List[float]]: """ Generate token-level embeddings via ColBERT. Returns a list of [token_dim] for each token in the sequence. """ inputs = colbert_tokenizer( text, return_tensors="pt", truncation=True, max_length=180 ) inputs = {k: v.to("cuda") for k, v in inputs.items()} with torch.no_grad(): outputs = colbert_model(**inputs) # outputs.last_hidden_state: [1, seq_len, hidden_dim] emb = outputs.last_hidden_state.squeeze(0) # shape: [seq_len, hidden_dim] # Convert each token embedding to a list return emb.cpu().numpy().tolist() ############################ # 3) The main embedding function ############################ @spaces.GPU def embed(document: str) -> Dict[str, Any]: """ Single function that returns dense, sparse (SPLADE), and ColBERT embeddings. Decorated with @spaces.GPU for ephemeral GPU usage in Hugging Face Spaces. """ dense_emb = get_dense_embedding(document) sparse_emb = get_splade_sparse_embedding(document) colbert_emb = get_colbert_embedding(document) return { "dense_embedding": dense_emb, "sparse_embedding": sparse_emb, "colbert_embedding": colbert_emb } ############################ # 4) Gradio App ############################ with gr.Blocks() as app: gr.Markdown("# Multi-Embedding Generator (Dense, SPLADE, ColBERT)") text_input = gr.Textbox(label="Enter text to embed") output = gr.JSON(label="Embeddings") # On submit, call embed() -> returns JSON text_input.submit(embed, inputs=text_input, outputs=output) if __name__ == "__main__": # queue() is optional but useful for concurrency app.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860)