Spaces:
Running
Running
mtesmer-iqnox
commited on
Commit
·
556f1d5
1
Parent(s):
c0a528b
sss code
Browse files
app.py
CHANGED
@@ -1,4 +1,301 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import json
|
3 |
+
from typing import List
|
4 |
+
from fastembed import LateInteractionTextEmbedding, TextEmbedding
|
5 |
+
from fastembed import SparseTextEmbedding, SparseEmbedding
|
6 |
+
from qdrant_client import QdrantClient, models
|
7 |
+
from tokenizers import Tokenizer
|
8 |
|
9 |
+
#############################
|
10 |
+
# 1. Utility / Helper Code
|
11 |
+
#############################
|
12 |
+
|
13 |
+
@st.cache_resource
|
14 |
+
def load_tokenizer():
|
15 |
+
"""
|
16 |
+
Load the tokenizer for interpreting sparse embeddings (optional usage).
|
17 |
+
"""
|
18 |
+
return Tokenizer.from_pretrained(SparseTextEmbedding.list_supported_models()[0]["sources"]["hf"])
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
def load_models():
|
22 |
+
"""
|
23 |
+
Load/initialize your models once and cache them.
|
24 |
+
"""
|
25 |
+
# Dense embedding model
|
26 |
+
dense_embedding_model = TextEmbedding("BAAI/bge-small-en-v1.5")
|
27 |
+
|
28 |
+
# Late interaction model (ColBERTv2)
|
29 |
+
late_embedding_model = LateInteractionTextEmbedding("colbert-ir/colbertv2.0")
|
30 |
+
|
31 |
+
# Sparse embedding model
|
32 |
+
sparse_model_name = "Qdrant/bm25"
|
33 |
+
sparse_model = SparseTextEmbedding(model_name=sparse_model_name)
|
34 |
+
|
35 |
+
return dense_embedding_model, late_embedding_model, sparse_model
|
36 |
+
|
37 |
+
def build_qdrant_index(data):
|
38 |
+
"""
|
39 |
+
Given the parsed data (list of items), build an in-memory Qdrant index
|
40 |
+
with dense, late, and sparse vectors.
|
41 |
+
"""
|
42 |
+
# Extract fields
|
43 |
+
items = data["items"]
|
44 |
+
descriptions = [f"{item['name']} - {item['description']}" for item in items]
|
45 |
+
names = [item["name"] for item in items]
|
46 |
+
metadata = [
|
47 |
+
{"name": item["name"]} # You can store more fields if you like
|
48 |
+
for item in items
|
49 |
+
]
|
50 |
+
|
51 |
+
# Load models
|
52 |
+
dense_embedding_model, late_embedding_model, sparse_model = load_models()
|
53 |
+
|
54 |
+
# Generate embeddings
|
55 |
+
dense_embeddings = list(dense_embedding_model.embed(descriptions))
|
56 |
+
name_dense_embeddings = list(dense_embedding_model.embed(names))
|
57 |
+
late_embeddings = list(late_embedding_model.embed(descriptions))
|
58 |
+
sparse_embeddings: List[SparseEmbedding] = list(sparse_model.embed(descriptions, batch_size=6))
|
59 |
+
|
60 |
+
# Create an in-memory Qdrant instance
|
61 |
+
qdrant_client = QdrantClient(":memory:")
|
62 |
+
|
63 |
+
# Create collection schema
|
64 |
+
qdrant_client.create_collection(
|
65 |
+
collection_name="items",
|
66 |
+
vectors_config={
|
67 |
+
"dense": models.VectorParams(
|
68 |
+
size=len(dense_embeddings[0]),
|
69 |
+
distance=models.Distance.COSINE,
|
70 |
+
),
|
71 |
+
"late": models.VectorParams(
|
72 |
+
size=len(late_embeddings[0][0]),
|
73 |
+
distance=models.Distance.COSINE,
|
74 |
+
multivector_config=models.MultiVectorConfig(
|
75 |
+
comparator=models.MultiVectorComparator.MAX_SIM
|
76 |
+
),
|
77 |
+
),
|
78 |
+
},
|
79 |
+
sparse_vectors_config={
|
80 |
+
"sparse": models.SparseVectorParams(
|
81 |
+
modifier=models.Modifier.IDF,
|
82 |
+
),
|
83 |
+
}
|
84 |
+
)
|
85 |
+
|
86 |
+
# Upload points
|
87 |
+
points = []
|
88 |
+
for idx, _ in enumerate(metadata):
|
89 |
+
points.append(
|
90 |
+
models.PointStruct(
|
91 |
+
id=idx,
|
92 |
+
payload=metadata[idx],
|
93 |
+
vector={
|
94 |
+
"late": late_embeddings[idx].tolist(),
|
95 |
+
"dense": dense_embeddings[idx],
|
96 |
+
"sparse": sparse_embeddings[idx].as_object(),
|
97 |
+
},
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
qdrant_client.upload_points(
|
102 |
+
collection_name="items",
|
103 |
+
points=points,
|
104 |
+
)
|
105 |
+
|
106 |
+
return qdrant_client
|
107 |
+
|
108 |
+
def run_queries(qdrant_client, query_text):
|
109 |
+
"""
|
110 |
+
Run all the different query types and return results in a dictionary.
|
111 |
+
"""
|
112 |
+
# Load models
|
113 |
+
dense_embedding_model, late_embedding_model, sparse_model = load_models()
|
114 |
+
|
115 |
+
# Generate single-query embeddings
|
116 |
+
dense_query = next(dense_embedding_model.query_embed(query_text))
|
117 |
+
late_query = next(late_embedding_model.query_embed(query_text))
|
118 |
+
sparse_query = next(sparse_model.query_embed(query_text))
|
119 |
+
|
120 |
+
# For the fusion approach, we need a list form for prefetch
|
121 |
+
tsq = list(sparse_model.embed(query_text, batch_size=6))
|
122 |
+
|
123 |
+
# We'll store top-5 results for each approach
|
124 |
+
results = {}
|
125 |
+
|
126 |
+
# 1) ColBERT (late)
|
127 |
+
results["C"] = qdrant_client.query_points(
|
128 |
+
collection_name="items",
|
129 |
+
query=late_query,
|
130 |
+
using="late",
|
131 |
+
limit=5,
|
132 |
+
with_payload=True
|
133 |
+
)
|
134 |
+
|
135 |
+
# 2) Sparse only
|
136 |
+
results["S"] = qdrant_client.query_points(
|
137 |
+
collection_name="items",
|
138 |
+
query=models.SparseVector(**sparse_query.as_object()),
|
139 |
+
using="sparse",
|
140 |
+
limit=5,
|
141 |
+
with_payload=True
|
142 |
+
)
|
143 |
+
|
144 |
+
# 3) Dense only
|
145 |
+
results["D"] = qdrant_client.query_points(
|
146 |
+
collection_name="items",
|
147 |
+
query=dense_query,
|
148 |
+
using="dense",
|
149 |
+
limit=5,
|
150 |
+
with_payload=True
|
151 |
+
)
|
152 |
+
|
153 |
+
# 4) Hybrid fusion (RRF for Sparse+Dense)
|
154 |
+
results["S+D-F"] = qdrant_client.query_points(
|
155 |
+
collection_name="items",
|
156 |
+
prefetch=[
|
157 |
+
models.Prefetch(
|
158 |
+
query=dense_query,
|
159 |
+
using="dense",
|
160 |
+
limit=100,
|
161 |
+
),
|
162 |
+
models.Prefetch(
|
163 |
+
query=tsq[0].as_object(),
|
164 |
+
using="sparse",
|
165 |
+
limit=50,
|
166 |
+
)
|
167 |
+
],
|
168 |
+
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
169 |
+
limit=5,
|
170 |
+
with_payload=True
|
171 |
+
)
|
172 |
+
|
173 |
+
# 5) Hybrid fusion + ColBERT
|
174 |
+
sparse_dense_prefetch = models.Prefetch(
|
175 |
+
prefetch=[
|
176 |
+
models.Prefetch(query=dense_query, using="dense", limit=100),
|
177 |
+
models.Prefetch(query=tsq[0].as_object(), using="sparse", limit=50),
|
178 |
+
],
|
179 |
+
limit=10,
|
180 |
+
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
181 |
+
)
|
182 |
+
results["S+D-F-C"] = qdrant_client.query_points(
|
183 |
+
collection_name="items",
|
184 |
+
prefetch=[sparse_dense_prefetch],
|
185 |
+
query=late_query,
|
186 |
+
using="late",
|
187 |
+
limit=5,
|
188 |
+
with_payload=True
|
189 |
+
)
|
190 |
+
|
191 |
+
# 6) Hybrid no-fusion + ColBERT
|
192 |
+
old_prefetch = models.Prefetch(
|
193 |
+
prefetch=[
|
194 |
+
models.Prefetch(
|
195 |
+
prefetch=[
|
196 |
+
models.Prefetch(query=dense_query, using="dense", limit=100)
|
197 |
+
],
|
198 |
+
query=tsq[0].as_object(),
|
199 |
+
using="sparse",
|
200 |
+
limit=50,
|
201 |
+
)
|
202 |
+
]
|
203 |
+
)
|
204 |
+
results["S+D-C"] = qdrant_client.query_points(
|
205 |
+
collection_name="items",
|
206 |
+
prefetch=[old_prefetch],
|
207 |
+
query=late_query,
|
208 |
+
using="late",
|
209 |
+
limit=5,
|
210 |
+
with_payload=True
|
211 |
+
)
|
212 |
+
|
213 |
+
return results
|
214 |
+
|
215 |
+
#############################
|
216 |
+
# 2. Streamlit Main App
|
217 |
+
#############################
|
218 |
+
|
219 |
+
def main():
|
220 |
+
st.title("Semantic Search Sandbox")
|
221 |
+
|
222 |
+
# Initialize session state if not present
|
223 |
+
if "json_loaded" not in st.session_state:
|
224 |
+
st.session_state["json_loaded"] = False
|
225 |
+
if "qdrant_client" not in st.session_state:
|
226 |
+
st.session_state["qdrant_client"] = None
|
227 |
+
|
228 |
+
#######################################
|
229 |
+
# Show JSON input only if not loaded
|
230 |
+
#######################################
|
231 |
+
if not st.session_state["json_loaded"]:
|
232 |
+
st.subheader("Paste items.json Here")
|
233 |
+
default_json = """
|
234 |
+
{
|
235 |
+
"items": [
|
236 |
+
{
|
237 |
+
"name": "Example1",
|
238 |
+
"description": "An example item"
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"name": "Example2",
|
242 |
+
"description": "Another item for demonstration"
|
243 |
+
}
|
244 |
+
]
|
245 |
+
}
|
246 |
+
""".strip()
|
247 |
+
|
248 |
+
json_text = st.text_area("JSON Input", value=default_json, height=300)
|
249 |
+
|
250 |
+
if st.button("Load JSON"):
|
251 |
+
try:
|
252 |
+
data = json.loads(json_text)
|
253 |
+
# Build Qdrant index in memory
|
254 |
+
st.session_state["qdrant_client"] = build_qdrant_index(data)
|
255 |
+
st.session_state["json_loaded"] = True
|
256 |
+
st.success("JSON loaded and Qdrant index built successfully!")
|
257 |
+
st.rerun()
|
258 |
+
except Exception as e:
|
259 |
+
st.error(f"Error parsing JSON: {e}")
|
260 |
+
|
261 |
+
else:
|
262 |
+
# The data is loaded, show a button to reset if you want to load new JSON
|
263 |
+
if st.button("Load a different JSON"):
|
264 |
+
st.session_state["json_loaded"] = False
|
265 |
+
st.session_state["qdrant_client"] = None
|
266 |
+
#st.experimental_rerun() # Refresh the page
|
267 |
+
else:
|
268 |
+
# Show the search interface
|
269 |
+
query_text = st.text_input("Search Query", value="ACB 1.0 Ports")
|
270 |
+
if st.button("Search"):
|
271 |
+
if st.session_state["qdrant_client"] is None:
|
272 |
+
st.warning("Please load valid JSON first.")
|
273 |
+
return
|
274 |
+
|
275 |
+
# Run queries
|
276 |
+
results_dict = run_queries(st.session_state["qdrant_client"], query_text)
|
277 |
+
|
278 |
+
# Display results in columns
|
279 |
+
col_names = list(results_dict.keys())
|
280 |
+
# You can split into multiple rows if there are more than 3
|
281 |
+
n_cols = 3
|
282 |
+
# We'll create enough columns to handle all search types
|
283 |
+
rows_needed = (len(col_names) + n_cols - 1) // n_cols
|
284 |
+
|
285 |
+
for row_idx in range(rows_needed):
|
286 |
+
cols = st.columns(n_cols)
|
287 |
+
for col_idx in range(n_cols):
|
288 |
+
method_idx = row_idx * n_cols + col_idx
|
289 |
+
if method_idx < len(col_names):
|
290 |
+
method = col_names[method_idx]
|
291 |
+
qdrant_result = results_dict[method]
|
292 |
+
|
293 |
+
with cols[col_idx]:
|
294 |
+
st.markdown(f"### {method}")
|
295 |
+
for point in qdrant_result.points:
|
296 |
+
name = point.payload.get("name", "Unnamed")
|
297 |
+
score = round(point.score, 4) if point.score else "N/A"
|
298 |
+
st.write(f"- **{name}** (score={score})")
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
main()
|