Krokodilpirat's picture
Update app.py
83f9422 verified
raw
history blame
7.7 kB
import os
import gc
import torch
import cv2 # Wird für die Bildverarbeitung (z.B. hconcat, GaussianBlur) benötigt
import gradio as gr
import numpy as np
import matplotlib.cm as cm
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download
# Examples for the Gradio Demo
examples = [
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280],
['assets/example_videos/obj_1.mp4', -1, -1, 1280],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280],
]
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Model configuration
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]
# Initialize the model
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
filename=f"video_depth_anything_{encoder}.pth",
repo_type="model")
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything"
description = """Official demo for **Video Depth Anything**.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
@gr.processing_utils.threaded # alternativ kann spaces.GPU genutzt werden, falls verfügbar
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
output_dir: str = './outputs',
input_size: int = 518,
stitch: bool = False,
grayscale: bool = False,
blur: float = 0.0,
):
# Read input video frames
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
# Infer depths using the model
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
video_name = os.path.basename(input_video)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Save the processed (RGB) video and the depth visualization
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
save_video(frames, processed_video_path, fps=fps)
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
stitched_video_path = ""
if stitch:
# Create a stitched video (side-by-side): left: processed RGB, right: depth
d_min, d_max = depths.min(), depths.max()
stitched_frames = []
for i in range(min(len(frames), len(depths))):
rgb_frame = frames[i]
depth_frame = depths[i]
# Normalize the depth frame to [0, 255]
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Choose grayscale or colored mapping
if grayscale:
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
cmap = cm.get_cmap("inferno")
# cmap liefert RGBA, hier verwenden wir nur die ersten drei Kanäle
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply Gaussian blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # ensures odd kernel size
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Concatenate side-by-side
stitched = cv2.hconcat([rgb_frame, depth_vis])
stitched_frames.append(stitched)
stitched_frames = np.array(stitched_frames)
stitched_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_stitched.mp4')
save_video(stitched_frames, stitched_video_path, fps=fps)
gc.collect()
torch.cuda.empty_cache()
# Return three outputs: processed RGB video, depth visualization, and (optionally) stitched video.
# Falls stitch nicht aktiviert ist, wird ein leerer String zurückgegeben.
return [processed_video_path, depth_vis_path, stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video", source="upload", type="filepath")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=500, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=15, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=False)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=False)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur Factor", value=0)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
fn=infer_video_depth,
cache_examples="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue()
demo.launch(share=True)