Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,7 @@ from video_depth_anything.video_depth import VideoDepthAnything
|
|
10 |
from utils.dc_utils import read_video_frames, save_video
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
-
# Examples for the Gradio Demo
|
14 |
-
# Hier wurden die zusätzlichen Parameter (stitch, grayscale, blur) mit Standardwerten ergänzt.
|
15 |
examples = [
|
16 |
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, False, False, 0],
|
17 |
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, False, False, 0],
|
@@ -25,19 +24,18 @@ examples = [
|
|
25 |
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, False, False, 0],
|
26 |
]
|
27 |
|
|
|
28 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
|
30 |
-
# Model configuration
|
31 |
model_configs = {
|
32 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
33 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
34 |
}
|
35 |
-
|
36 |
encoder2name = {
|
37 |
'vits': 'Small',
|
38 |
'vitl': 'Large',
|
39 |
}
|
40 |
-
|
41 |
encoder = 'vitl'
|
42 |
model_name = encoder2name[encoder]
|
43 |
|
@@ -63,47 +61,52 @@ def infer_video_depth(
|
|
63 |
stitch: bool = False,
|
64 |
grayscale: bool = False,
|
65 |
blur: float = 0.0,
|
66 |
-
*, #
|
67 |
output_dir: str = './outputs',
|
68 |
input_size: int = 518,
|
69 |
):
|
70 |
-
# Read input video frames
|
71 |
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
|
72 |
-
#
|
73 |
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
|
74 |
|
75 |
video_name = os.path.basename(input_video)
|
76 |
if not os.path.exists(output_dir):
|
77 |
os.makedirs(output_dir)
|
78 |
|
79 |
-
# Save the
|
80 |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
81 |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
82 |
save_video(frames, processed_video_path, fps=fps)
|
83 |
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
|
84 |
|
85 |
-
stitched_video_path =
|
86 |
if stitch:
|
87 |
-
#
|
|
|
|
|
88 |
d_min, d_max = depths.min(), depths.max()
|
89 |
stitched_frames = []
|
90 |
-
for i in range(min(len(
|
91 |
-
|
92 |
depth_frame = depths[i]
|
93 |
-
# Normalize the depth frame to [0, 255]
|
94 |
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
95 |
-
#
|
96 |
if grayscale:
|
97 |
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
98 |
else:
|
99 |
cmap = cm.get_cmap("inferno")
|
100 |
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
101 |
-
# Apply Gaussian blur if requested (blur factor > 0)
|
102 |
if blur > 0:
|
103 |
kernel_size = int(blur * 20) * 2 + 1 # ensures an odd kernel size
|
104 |
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
105 |
-
#
|
106 |
-
|
|
|
|
|
|
|
107 |
stitched_frames.append(stitched)
|
108 |
stitched_frames = np.array(stitched_frames)
|
109 |
stitched_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_stitched.mp4')
|
@@ -112,7 +115,7 @@ def infer_video_depth(
|
|
112 |
gc.collect()
|
113 |
torch.cuda.empty_cache()
|
114 |
|
115 |
-
# Return processed RGB video, depth visualization, and (if created) stitched video.
|
116 |
return [processed_video_path, depth_vis_path, stitched_video_path]
|
117 |
|
118 |
def construct_demo():
|
@@ -123,7 +126,7 @@ def construct_demo():
|
|
123 |
|
124 |
with gr.Row(equal_height=True):
|
125 |
with gr.Column(scale=1):
|
126 |
-
#
|
127 |
input_video = gr.Video(label="Input Video")
|
128 |
with gr.Column(scale=2):
|
129 |
with gr.Row(equal_height=True):
|
|
|
10 |
from utils.dc_utils import read_video_frames, save_video
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
+
# Examples for the Gradio Demo (the additional parameters: stitch, grayscale, blur are appended)
|
|
|
14 |
examples = [
|
15 |
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, False, False, 0],
|
16 |
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, False, False, 0],
|
|
|
24 |
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, False, False, 0],
|
25 |
]
|
26 |
|
27 |
+
# Determine the device: use GPU if available, else CPU.
|
28 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
|
30 |
+
# Model configuration for different encoder variants.
|
31 |
model_configs = {
|
32 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
33 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
34 |
}
|
|
|
35 |
encoder2name = {
|
36 |
'vits': 'Small',
|
37 |
'vitl': 'Large',
|
38 |
}
|
|
|
39 |
encoder = 'vitl'
|
40 |
model_name = encoder2name[encoder]
|
41 |
|
|
|
61 |
stitch: bool = False,
|
62 |
grayscale: bool = False,
|
63 |
blur: float = 0.0,
|
64 |
+
*, # The following parameters are keyword-only and cannot be overridden by UI input.
|
65 |
output_dir: str = './outputs',
|
66 |
input_size: int = 518,
|
67 |
):
|
68 |
+
# Read input video frames with the given maximum resolution (max_res) for inference.
|
69 |
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
|
70 |
+
# Perform depth inference using the model.
|
71 |
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
|
72 |
|
73 |
video_name = os.path.basename(input_video)
|
74 |
if not os.path.exists(output_dir):
|
75 |
os.makedirs(output_dir)
|
76 |
|
77 |
+
# Save the preprocessed (RGB) video and the depth visualization (using the default color mapping)
|
78 |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
79 |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
80 |
save_video(frames, processed_video_path, fps=fps)
|
81 |
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
|
82 |
|
83 |
+
stitched_video_path = None
|
84 |
if stitch:
|
85 |
+
# For stitching: read the original video in full resolution (without downscaling)
|
86 |
+
full_frames, _ = read_video_frames(input_video, max_len, target_fps, max_res=-1)
|
87 |
+
# For each frame, create a visual depth image from the inferenced depth maps (which are in the downscaled resolution)
|
88 |
d_min, d_max = depths.min(), depths.max()
|
89 |
stitched_frames = []
|
90 |
+
for i in range(min(len(full_frames), len(depths))):
|
91 |
+
rgb_full = full_frames[i] # Full-resolution RGB frame
|
92 |
depth_frame = depths[i]
|
93 |
+
# Normalize the depth frame to the range [0, 255]
|
94 |
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
95 |
+
# Create either a grayscale image or apply the inferno colormap, depending on the setting.
|
96 |
if grayscale:
|
97 |
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
98 |
else:
|
99 |
cmap = cm.get_cmap("inferno")
|
100 |
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
101 |
+
# Apply Gaussian blur if requested (if blur factor > 0)
|
102 |
if blur > 0:
|
103 |
kernel_size = int(blur * 20) * 2 + 1 # ensures an odd kernel size
|
104 |
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
105 |
+
# Resize the depth visual image to match the full-resolution RGB frame.
|
106 |
+
H_full, W_full = rgb_full.shape[:2]
|
107 |
+
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
|
108 |
+
# Concatenate the full-resolution RGB frame (left) and the resized depth visual (right) side-by-side.
|
109 |
+
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
110 |
stitched_frames.append(stitched)
|
111 |
stitched_frames = np.array(stitched_frames)
|
112 |
stitched_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_stitched.mp4')
|
|
|
115 |
gc.collect()
|
116 |
torch.cuda.empty_cache()
|
117 |
|
118 |
+
# Return the processed RGB video, depth visualization, and (if created) the stitched video.
|
119 |
return [processed_video_path, depth_vis_path, stitched_video_path]
|
120 |
|
121 |
def construct_demo():
|
|
|
126 |
|
127 |
with gr.Row(equal_height=True):
|
128 |
with gr.Column(scale=1):
|
129 |
+
# Use the Video component for file upload (without specifying 'source')
|
130 |
input_video = gr.Video(label="Input Video")
|
131 |
with gr.Column(scale=2):
|
132 |
with gr.Row(equal_height=True):
|