Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesClaude recommendation for reducing memory usage.
app.py
CHANGED
@@ -5,18 +5,16 @@ import cv2
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import matplotlib.cm as cm
|
8 |
-
import matplotlib
|
9 |
import subprocess
|
10 |
import sys
|
11 |
import spaces
|
12 |
|
13 |
from video_depth_anything.video_depth import VideoDepthAnything
|
14 |
-
from utils.dc_utils import
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
# Examples for the Gradio Demo.
|
18 |
-
# Each example now contains 8 parameters:
|
19 |
-
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
|
20 |
examples = [
|
21 |
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
22 |
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
@@ -62,8 +60,86 @@ title = "# Video Depth Anything + RGBD sbs output"
|
|
62 |
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
|
63 |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def infer_video_depth(
|
68 |
input_video: str,
|
69 |
max_len: int = -1,
|
@@ -76,67 +152,171 @@ def infer_video_depth(
|
|
76 |
output_dir: str = './outputs',
|
77 |
input_size: int = 518,
|
78 |
):
|
79 |
-
# 1. Read input video frames for inference (downscaled to max_res).
|
80 |
-
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
|
81 |
-
# 2. Perform depth inference using the model.
|
82 |
-
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
|
83 |
-
|
84 |
-
video_name = os.path.basename(input_video)
|
85 |
if not os.path.exists(output_dir):
|
86 |
os.makedirs(output_dir)
|
87 |
-
|
88 |
-
|
89 |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
90 |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
stitched_video_path = None
|
95 |
if stitch:
|
96 |
-
# For stitching: read the original video in full resolution
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
if grayscale:
|
108 |
if convert_from_color:
|
109 |
-
# First, generate a color depth image using the inferno colormap,
|
110 |
-
# then convert that color image to grayscale.
|
111 |
cmap = matplotlib.colormaps.get_cmap("inferno")
|
112 |
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
113 |
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
114 |
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
115 |
else:
|
116 |
-
# Directly generate a grayscale image from the normalized depth values.
|
117 |
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
118 |
else:
|
119 |
-
# Generate a color depth image using the inferno colormap.
|
120 |
cmap = matplotlib.colormaps.get_cmap("inferno")
|
121 |
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
122 |
-
|
|
|
123 |
if blur > 0:
|
124 |
-
kernel_size = int(blur * 20) * 2 + 1
|
125 |
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
126 |
-
|
|
|
127 |
H_full, W_full = rgb_full.shape[:2]
|
128 |
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
|
129 |
-
|
|
|
130 |
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
base_name = os.path.splitext(video_name)[0]
|
135 |
-
short_name = base_name[:20]
|
136 |
-
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
137 |
-
save_video(stitched_frames, stitched_video_path, fps=fps)
|
138 |
|
139 |
-
|
|
|
|
|
140 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
141 |
cmd = [
|
142 |
"ffmpeg",
|
@@ -152,11 +332,11 @@ def infer_video_depth(
|
|
152 |
]
|
153 |
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
154 |
os.replace(temp_audio_path, stitched_video_path)
|
155 |
-
|
|
|
156 |
gc.collect()
|
157 |
torch.cuda.empty_cache()
|
158 |
-
|
159 |
-
# Return the preprocessed RGB video, depth visualization, and (if created) the stitched video.
|
160 |
return [processed_video_path, depth_vis_path, stitched_video_path]
|
161 |
|
162 |
def construct_demo():
|
@@ -208,6 +388,4 @@ def construct_demo():
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
demo = construct_demo()
|
211 |
-
#demo.queue() # Enable asynchronous processing.
|
212 |
-
#demo.launch(share=True)
|
213 |
demo.queue(max_size=2).launch()
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import matplotlib.cm as cm
|
8 |
+
import matplotlib
|
9 |
import subprocess
|
10 |
import sys
|
11 |
import spaces
|
12 |
|
13 |
from video_depth_anything.video_depth import VideoDepthAnything
|
14 |
+
from utils.dc_utils import save_video
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
# Examples for the Gradio Demo.
|
|
|
|
|
18 |
examples = [
|
19 |
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
20 |
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
|
|
60 |
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
|
61 |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
|
62 |
|
63 |
+
def get_video_info(video_path, max_len=-1, target_fps=-1):
|
64 |
+
"""Extract video information without loading all frames into memory."""
|
65 |
+
cap = cv2.VideoCapture(video_path)
|
66 |
+
if not cap.isOpened():
|
67 |
+
raise ValueError(f"Could not open video file: {video_path}")
|
68 |
+
|
69 |
+
# Get video properties
|
70 |
+
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
71 |
+
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
72 |
+
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
73 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
74 |
+
|
75 |
+
# Adjust based on max_len parameter
|
76 |
+
if max_len > 0 and max_len < total_frames:
|
77 |
+
frame_count = max_len
|
78 |
+
else:
|
79 |
+
frame_count = total_frames
|
80 |
+
|
81 |
+
# Use target_fps if specified
|
82 |
+
if target_fps > 0:
|
83 |
+
fps = target_fps
|
84 |
+
else:
|
85 |
+
fps = original_fps
|
86 |
+
|
87 |
+
cap.release()
|
88 |
+
|
89 |
+
return {
|
90 |
+
'width': original_width,
|
91 |
+
'height': original_height,
|
92 |
+
'fps': fps,
|
93 |
+
'original_fps': original_fps,
|
94 |
+
'frame_count': frame_count,
|
95 |
+
'total_frames': total_frames
|
96 |
+
}
|
97 |
+
|
98 |
+
def process_frame(frame, max_res):
|
99 |
+
"""Process a single frame to the desired resolution."""
|
100 |
+
if max_res > 0:
|
101 |
+
h, w = frame.shape[:2]
|
102 |
+
scale = min(max_res / w, max_res / h)
|
103 |
+
if scale < 1:
|
104 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
105 |
+
frame = cv2.resize(frame, (new_w, new_h))
|
106 |
+
return frame
|
107 |
|
108 |
+
def frame_generator(video_path, max_len=-1, target_fps=-1, max_res=-1, skip_frames=0):
|
109 |
+
"""Generate frames from a video file one at a time."""
|
110 |
+
cap = cv2.VideoCapture(video_path)
|
111 |
+
if not cap.isOpened():
|
112 |
+
raise ValueError(f"Could not open video file: {video_path}")
|
113 |
+
|
114 |
+
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
115 |
+
frame_count = 0
|
116 |
+
|
117 |
+
# Calculate frame skip if target_fps is specified
|
118 |
+
if target_fps > 0 and target_fps < original_fps:
|
119 |
+
skip = int(round(original_fps / target_fps)) - 1
|
120 |
+
else:
|
121 |
+
skip = skip_frames
|
122 |
+
|
123 |
+
frame_idx = 0
|
124 |
+
while True:
|
125 |
+
ret, frame = cap.read()
|
126 |
+
if not ret or (max_len > 0 and frame_count >= max_len):
|
127 |
+
break
|
128 |
+
|
129 |
+
# Process frame if we're not skipping it
|
130 |
+
if frame_idx % (skip + 1) == 0:
|
131 |
+
# Convert from BGR to RGB
|
132 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
133 |
+
# Resize if necessary
|
134 |
+
processed_frame = process_frame(frame, max_res)
|
135 |
+
yield processed_frame
|
136 |
+
frame_count += 1
|
137 |
+
|
138 |
+
frame_idx += 1
|
139 |
+
|
140 |
+
cap.release()
|
141 |
+
|
142 |
+
@spaces.GPU(enable_queue=True)
|
143 |
def infer_video_depth(
|
144 |
input_video: str,
|
145 |
max_len: int = -1,
|
|
|
152 |
output_dir: str = './outputs',
|
153 |
input_size: int = 518,
|
154 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
if not os.path.exists(output_dir):
|
156 |
os.makedirs(output_dir)
|
157 |
+
|
158 |
+
video_name = os.path.basename(input_video)
|
159 |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
160 |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
161 |
+
|
162 |
+
# Get video info first
|
163 |
+
video_info = get_video_info(input_video, max_len, target_fps)
|
164 |
+
fps = video_info['fps']
|
165 |
+
frame_count = video_info['frame_count']
|
166 |
+
|
167 |
+
# Set up VideoWriters
|
168 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
169 |
+
|
170 |
+
# Setup for processing batches of frames
|
171 |
+
batch_size = 8 # Process frames in small batches to balance efficiency and memory usage
|
172 |
+
processed_frames = []
|
173 |
+
depth_frames = []
|
174 |
+
stitched_frames = []
|
175 |
+
|
176 |
+
# Initialize min/max depth values for depth normalization
|
177 |
+
d_min, d_max = float('inf'), float('-inf')
|
178 |
+
depth_values = []
|
179 |
+
|
180 |
+
# First pass: Process frames for depth inference and collect min/max depth values
|
181 |
+
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
|
182 |
+
|
183 |
+
# Process frames in batches for depth inference
|
184 |
+
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
|
185 |
+
batch_count = 0
|
186 |
+
|
187 |
+
for i, frame in enumerate(frame_gen):
|
188 |
+
if i % 10 == 0:
|
189 |
+
print(f"Processing frame {i+1}/{frame_count}")
|
190 |
+
|
191 |
+
processed_frames.append(frame)
|
192 |
+
|
193 |
+
# When we have a full batch or reached the end, process it
|
194 |
+
if len(processed_frames) == batch_size or i == frame_count - 1:
|
195 |
+
# Process the batch for depth
|
196 |
+
with torch.no_grad():
|
197 |
+
batch_depths = video_depth_anything.infer_frames_depth(
|
198 |
+
processed_frames,
|
199 |
+
input_size=input_size,
|
200 |
+
device=DEVICE
|
201 |
+
)
|
202 |
+
|
203 |
+
# Collect depth statistics and frames
|
204 |
+
for depth in batch_depths:
|
205 |
+
d_min = min(d_min, depth.min())
|
206 |
+
d_max = max(d_max, depth.max())
|
207 |
+
depth_values.append(depth)
|
208 |
+
|
209 |
+
# Clear batch for next iteration
|
210 |
+
processed_frames = []
|
211 |
+
batch_count += 1
|
212 |
+
|
213 |
+
# Free up memory
|
214 |
+
torch.cuda.empty_cache()
|
215 |
+
gc.collect()
|
216 |
+
|
217 |
+
# Save the processed video
|
218 |
+
height, width = depth_values[0].shape[:2] if depth_values else (0, 0)
|
219 |
+
video_writer = cv2.VideoWriter(processed_video_path, fourcc, fps, (width, height))
|
220 |
+
|
221 |
+
# Reprocess frames to save original and depth videos
|
222 |
+
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
|
223 |
+
depth_writer = cv2.VideoWriter(depth_vis_path, fourcc, fps, (width, height))
|
224 |
+
|
225 |
+
for i, (frame, depth) in enumerate(zip(frame_gen, depth_values)):
|
226 |
+
# Save original frame (convert RGB to BGR for OpenCV)
|
227 |
+
video_writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
228 |
+
|
229 |
+
# Normalize and visualize depth
|
230 |
+
depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
231 |
+
if grayscale:
|
232 |
+
if convert_from_color:
|
233 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
234 |
+
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
235 |
+
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
236 |
+
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
237 |
+
else:
|
238 |
+
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
239 |
+
else:
|
240 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
241 |
+
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
242 |
+
|
243 |
+
# Apply blur if requested
|
244 |
+
if blur > 0:
|
245 |
+
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size
|
246 |
+
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
247 |
+
|
248 |
+
# Save depth visualization (convert RGB to BGR for OpenCV)
|
249 |
+
depth_writer.write(cv2.cvtColor(depth_vis, cv2.COLOR_RGB2BGR))
|
250 |
+
|
251 |
+
video_writer.release()
|
252 |
+
depth_writer.release()
|
253 |
+
|
254 |
+
# Process stitched video if requested
|
255 |
stitched_video_path = None
|
256 |
if stitch:
|
257 |
+
# For stitching: read the original video in full resolution
|
258 |
+
video_info_full = get_video_info(input_video, max_len, target_fps)
|
259 |
+
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1) # No resizing
|
260 |
+
|
261 |
+
# Create a new writer for the stitched video
|
262 |
+
base_name = os.path.splitext(video_name)[0]
|
263 |
+
short_name = base_name[:20]
|
264 |
+
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
265 |
+
|
266 |
+
# Get dimensions of the first frame to setup the video writer
|
267 |
+
first_frame = next(frame_generator(input_video, 1, -1, -1))
|
268 |
+
H_full, W_full = first_frame.shape[:2]
|
269 |
+
|
270 |
+
# Set up the stitched video writer
|
271 |
+
stitched_writer = cv2.VideoWriter(
|
272 |
+
stitched_video_path,
|
273 |
+
fourcc,
|
274 |
+
fps,
|
275 |
+
(W_full * 2, H_full) # Width is doubled for side-by-side
|
276 |
+
)
|
277 |
+
|
278 |
+
# Reset frame generator
|
279 |
+
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1)
|
280 |
+
|
281 |
+
# Process each frame
|
282 |
+
for i, (rgb_full, depth) in enumerate(zip(original_frame_gen, depth_values)):
|
283 |
+
if i % 10 == 0:
|
284 |
+
print(f"Stitching frame {i+1}/{frame_count}")
|
285 |
+
|
286 |
+
# Normalize and visualize depth
|
287 |
+
depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
288 |
+
|
289 |
+
# Generate depth visualization
|
290 |
if grayscale:
|
291 |
if convert_from_color:
|
|
|
|
|
292 |
cmap = matplotlib.colormaps.get_cmap("inferno")
|
293 |
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
294 |
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
295 |
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
296 |
else:
|
|
|
297 |
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
298 |
else:
|
|
|
299 |
cmap = matplotlib.colormaps.get_cmap("inferno")
|
300 |
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
301 |
+
|
302 |
+
# Apply blur if requested
|
303 |
if blur > 0:
|
304 |
+
kernel_size = int(blur * 20) * 2 + 1
|
305 |
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
306 |
+
|
307 |
+
# Resize depth to match original frame
|
308 |
H_full, W_full = rgb_full.shape[:2]
|
309 |
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
|
310 |
+
|
311 |
+
# Concatenate RGB and depth
|
312 |
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
313 |
+
|
314 |
+
# Write to video (convert RGB to BGR for OpenCV)
|
315 |
+
stitched_writer.write(cv2.cvtColor(stitched, cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
stitched_writer.release()
|
318 |
+
|
319 |
+
# Merge audio from the input video into the stitched video
|
320 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
321 |
cmd = [
|
322 |
"ffmpeg",
|
|
|
332 |
]
|
333 |
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
334 |
os.replace(temp_audio_path, stitched_video_path)
|
335 |
+
|
336 |
+
# Clean up
|
337 |
gc.collect()
|
338 |
torch.cuda.empty_cache()
|
339 |
+
|
|
|
340 |
return [processed_video_path, depth_vis_path, stitched_video_path]
|
341 |
|
342 |
def construct_demo():
|
|
|
388 |
|
389 |
if __name__ == "__main__":
|
390 |
demo = construct_demo()
|
|
|
|
|
391 |
demo.queue(max_size=2).launch()
|