Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,19 +12,22 @@ from utils.dc_utils import read_video_frames, save_video
|
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
# Examples for the Gradio Demo.
|
15 |
-
# Each example now contains 8 parameters
|
16 |
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
|
17 |
examples = [
|
18 |
-
['assets/example_videos/
|
19 |
-
['assets/example_videos/
|
20 |
-
['assets/example_videos/
|
21 |
-
['assets/example_videos/
|
22 |
-
['assets/example_videos/
|
23 |
-
['assets/example_videos/
|
24 |
-
['assets/example_videos/
|
25 |
-
['assets/example_videos/
|
26 |
-
['assets/example_videos/
|
27 |
-
['assets/example_videos/
|
|
|
|
|
|
|
28 |
]
|
29 |
|
30 |
# Use GPU if available; otherwise, use CPU.
|
@@ -64,7 +67,7 @@ def infer_video_depth(
|
|
64 |
stitch: bool = True,
|
65 |
grayscale: bool = True,
|
66 |
convert_from_color: bool = True,
|
67 |
-
blur: float = 0.
|
68 |
output_dir: str = './outputs',
|
69 |
input_size: int = 518,
|
70 |
):
|
@@ -104,7 +107,7 @@ def infer_video_depth(
|
|
104 |
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
105 |
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
106 |
else:
|
107 |
-
# Directly generate a grayscale image from
|
108 |
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
109 |
else:
|
110 |
# Generate a color depth image using the inferno colormap.
|
@@ -175,7 +178,7 @@ def construct_demo():
|
|
175 |
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
|
176 |
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
|
177 |
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
|
178 |
-
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts)", value=0.
|
179 |
generate_btn = gr.Button("Generate")
|
180 |
with gr.Column(scale=2):
|
181 |
pass
|
@@ -200,4 +203,4 @@ def construct_demo():
|
|
200 |
if __name__ == "__main__":
|
201 |
demo = construct_demo()
|
202 |
demo.queue() # Enable asynchronous processing.
|
203 |
-
demo.launch(share=True)
|
|
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
# Examples for the Gradio Demo.
|
15 |
+
# Each example now contains 8 parameters:
|
16 |
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
|
17 |
examples = [
|
18 |
+
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
19 |
+
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
20 |
+
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
21 |
+
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
|
22 |
+
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
|
23 |
+
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
|
24 |
+
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
|
25 |
+
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
|
26 |
+
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
|
27 |
+
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
|
28 |
+
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
|
29 |
+
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
|
30 |
+
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
|
31 |
]
|
32 |
|
33 |
# Use GPU if available; otherwise, use CPU.
|
|
|
67 |
stitch: bool = True,
|
68 |
grayscale: bool = True,
|
69 |
convert_from_color: bool = True,
|
70 |
+
blur: float = 0.3,
|
71 |
output_dir: str = './outputs',
|
72 |
input_size: int = 518,
|
73 |
):
|
|
|
107 |
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
108 |
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
109 |
else:
|
110 |
+
# Directly generate a grayscale image from normalized depth.
|
111 |
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
112 |
else:
|
113 |
# Generate a color depth image using the inferno colormap.
|
|
|
178 |
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
|
179 |
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
|
180 |
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
|
181 |
+
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts)", value=0.3)
|
182 |
generate_btn = gr.Button("Generate")
|
183 |
with gr.Column(scale=2):
|
184 |
pass
|
|
|
203 |
if __name__ == "__main__":
|
204 |
demo = construct_demo()
|
205 |
demo.queue() # Enable asynchronous processing.
|
206 |
+
demo.launch(share=True)
|