Spaces:
Sleeping
Sleeping
import streamlit as st | |
from setfit import SetFitModel | |
# Load the model | |
model = SetFitModel.from_pretrained("peter2000/vulnerable-groups-setfit") | |
# Define the classes | |
group_dict = { | |
0: 'Coastal communities', | |
1: 'Small island developing states (SIDS)', | |
2: 'Landlocked countries', | |
3: 'Low-income households', | |
4: 'Informal settlements and slums', | |
5: 'Rural communities', | |
6: 'Children and youth', | |
7: 'Older adults and the elderly', | |
8: 'Women and girls', | |
9: 'People with pre-existing health conditions', | |
10: 'People with disabilities', | |
11: 'Small-scale farmers and subsistence agriculture', | |
12: 'Fisherfolk and fishing communities', | |
13: 'Informal sector workers', | |
14: 'Children with disabilities', | |
15: 'Remote communities', | |
16: 'Young adults', | |
17: 'Elderly population', | |
18: 'Urban slums', | |
19: 'Men and boys', | |
20: 'Gender non-conforming individuals', | |
21: 'Pregnant women and new mothers', | |
22: 'Mountain communities', | |
23: 'Riverine and flood-prone areas', | |
24: 'Drought-prone regions', | |
25: 'Indigenous peoples', | |
26: 'Migrants and displaced populations', | |
27: 'Outdoor workers', | |
28: 'Small-scale farmers', | |
29: 'Other'} | |
def predict(text): | |
preds = model([text])[0].item() | |
return group_dict[preds] | |
text = st.text_area('enter your text here') | |
# App | |
st.title("Identify references to vulnerable groups.") | |
st.write("This app allows you to identify whether a text contains any references to vulnerable groups. This can, for example, be used to analyse policy documents.") | |
col1, col2 = st.columns(2) | |
col1.text_area('enter your text here') | |
col2.text('f"{ group_dict['label'] }: { round(p['score'] * 100, 1)}%"') | |
st.write("Example: To promote gender diversity, ") |