mtyrrell's picture
Update appStore/rag.py
b88b103 verified
raw
history blame
9.13 kB
# import os
# # import json
# import numpy as np
# import pandas as pd
# import openai
# from haystack.schema import Document
# import streamlit as st
# from tenacity import retry, stop_after_attempt, wait_random_exponential
# # Get openai API key
# # openai.api_key = os.environ["OPENAI_API_KEY"]
# hf_token = os.environ["HF_API_KEY"]
# #model_select = "gpt-3.5-turbo-0125"
# model_select ="gpt-4"
# # define a special function for putting the prompt together (as we can't use haystack)
# def get_prompt(context, label):
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
# Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
# If there is no mention of "+label+" in the context, return nothing. \
# Formatting example: \
# - Bullet point 1 \
# - Bullet point 2 \
# "
# # Add the meta data for references
# # context = ' - '.join([d.content for d in docs])
# prompt = base_prompt+"; Context: "+context+"; Answer:"
# return prompt
# # def get_prompt(context, label):
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
# # Summarize only elements of the context that address vulnerability to climate change. \
# # Formatting example: \
# # - Bullet point 1 \
# # - Bullet point 2 \
# # "
# # # Add the meta data for references
# # # context = ' - '.join([d.content for d in docs])
# # prompt = base_prompt+"; Context: "+context+"; Answer:"
# # return prompt
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
# # Summarize only activities that address the vulnerability of "+label+" to climate change. \
# # Formatting example: \
# # - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
# # - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
# # "
# # # convert df rows to Document object so we can feed it into the summarizer easily
# # def get_document(df):
# # # we take a list of each extract
# # ls_dict = []
# # for index, row in df.iterrows():
# # # Create a Document object for each row (we only need the text)
# # doc = Document(
# # row['text'],
# # meta={
# # 'label': row['Vulnerability Label']}
# # )
# # # Append the Document object to the documents list
# # ls_dict.append(doc)
# # return ls_dict
# # exception handling for issuing multiple API calls to openai (exponential backoff)
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
# def completion_with_backoff(**kwargs):
# return openai.ChatCompletion.create(**kwargs)
# # construct RAG query, send to openai and process response
# def run_query(context, label):
# '''
# For non-streamed completion, enable the following 2 lines and comment out the code below
# '''
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
# # result = res.choices[0].message.content
# # instantiate ChatCompletion as a generator object (stream is set to True)
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
# # iterate through the streamed output
# report = []
# res_box = st.empty()
# for chunk in response:
# # extract the object containing the text (totally different structure when streaming)
# chunk_message = chunk['choices'][0]['delta']
# # test to make sure there is text in the object (some don't have)
# if 'content' in chunk_message:
# report.append(chunk_message.content) # extract the message
# # add the latest text and merge it with all previous
# result = "".join(report).strip()
# # res_box.success(result) # output to response text box
# res_box.success(result)
import os
# import json
import numpy as np
import pandas as pd
import openai
from haystack.schema import Document
import streamlit as st
from tenacity import retry, stop_after_attempt, wait_random_exponential
from huggingface_hub import InferenceClient
# Get openai API key
hf_token = os.environ["HF_API_KEY"]
# define a special function for putting the prompt together (as we can't use haystack)
def get_prompt(context, label):
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
If there is no mention of "+label+" in the context, return nothing. \
Formatting example: \
- Bullet point 1 \
- Bullet point 2 \
"
# Add the meta data for references
# context = ' - '.join([d.content for d in docs])
prompt = base_prompt+"; Context: "+context+"; Answer:"
return prompt
# # exception handling for issuing multiple API calls to openai (exponential backoff)
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
# def completion_with_backoff(**kwargs):
# return openai.ChatCompletion.create(**kwargs)
def get_prompt(context, label):
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
If there is no mention of "+label+" in the context, return nothing. \
Do not include an introduction sentence, just the bullet points as per below. \
Formatting example: \
- Bullet point 1 \
- Bullet point 2 \
"
# Add the meta data for references
# context = ' - '.join([d.content for d in docs])
prompt = base_prompt+"; Context: "+context+"; Answer:"
return prompt
# # construct RAG query, send to openai and process response
# def run_query(context, label, chatbot_role):
# '''
# For non-streamed completion, enable the following 2 lines and comment out the code below
# '''
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
# # result = res.choices[0].message.content
# messages = [
# ChatMessage(role="system", content=chatbot_role),
# ChatMessage(role="user", content=get_prompt(context, label)),
# ]
# response = llm.chat(messages)
# return(response)
# tokenizer = AutoTokenizer.from_pretrained(
# "meta-llama/Meta-Llama-3.1-8B-Instruct",
# token=hf_token,
# )
# stopping_ids = [
# tokenizer.eos_token_id,
# tokenizer.convert_tokens_to_ids("<|eot_id|>"),
# ]
# Define the role of the chatbot
# chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
# construct RAG query, send to openai and process response
def run_query(context, label):
'''
For non-streamed completion, enable the following 2 lines and comment out the code below
'''
chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
# result = res.choices[0].message.content
# Initialize the client, pointing it to one of the available models
client = InferenceClient()
response = client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
messages=[
ChatMessage(role="system", content=chatbot_role),
ChatMessage(role="user", content=get_prompt(context, label)),
],
stream=True,
max_tokens=500
)
# iterate and print stream
# for message in chat_completion:
# print(message.choices[0].delta.content, end="")
# instantiate ChatCompletion as a generator object (stream is set to True)
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
# iterate through the streamed output
report = []
res_box = st.empty()
for chunk in client.chat_completion(messages, stream=True)::
# extract the object containing the text (totally different structure when streaming)
chunk_message = chunk['choices'][0]['delta']
# test to make sure there is text in the object (some don't have)
if 'content' in chunk_message:
report.append(chunk_message.content) # extract the message
# add the latest text and merge it with all previous
result = "".join(report).strip()
# res_box.success(result) # output to response text box
res_box.success(result)