Spaces:
Sleeping
Sleeping
Update appStore/rag.py
Browse files- appStore/rag.py +176 -40
appStore/rag.py
CHANGED
@@ -1,3 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
# import json
|
3 |
import numpy as np
|
@@ -6,12 +107,12 @@ import openai
|
|
6 |
from haystack.schema import Document
|
7 |
import streamlit as st
|
8 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
|
|
9 |
|
10 |
|
11 |
# Get openai API key
|
12 |
-
|
13 |
-
|
14 |
-
model_select ="gpt-4"
|
15 |
|
16 |
# define a special function for putting the prompt together (as we can't use haystack)
|
17 |
def get_prompt(context, label):
|
@@ -29,59 +130,91 @@ def get_prompt(context, label):
|
|
29 |
|
30 |
return prompt
|
31 |
|
32 |
-
# def get_prompt(context, label):
|
33 |
-
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
34 |
-
# Summarize only elements of the context that address vulnerability to climate change. \
|
35 |
-
# Formatting example: \
|
36 |
-
# - Bullet point 1 \
|
37 |
-
# - Bullet point 2 \
|
38 |
-
# "
|
39 |
|
40 |
-
# # Add the meta data for references
|
41 |
-
# # context = ' - '.join([d.content for d in docs])
|
42 |
-
# prompt = base_prompt+"; Context: "+context+"; Answer:"
|
43 |
-
|
44 |
-
# return prompt
|
45 |
|
46 |
-
# base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
|
47 |
-
# Summarize only activities that address the vulnerability of "+label+" to climate change. \
|
48 |
-
# Formatting example: \
|
49 |
-
# - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
|
50 |
-
# - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
|
51 |
-
# "
|
52 |
-
# # convert df rows to Document object so we can feed it into the summarizer easily
|
53 |
-
# def get_document(df):
|
54 |
-
# # we take a list of each extract
|
55 |
-
# ls_dict = []
|
56 |
-
# for index, row in df.iterrows():
|
57 |
-
# # Create a Document object for each row (we only need the text)
|
58 |
-
# doc = Document(
|
59 |
-
# row['text'],
|
60 |
-
# meta={
|
61 |
-
# 'label': row['Vulnerability Label']}
|
62 |
-
# )
|
63 |
-
# # Append the Document object to the documents list
|
64 |
-
# ls_dict.append(doc)
|
65 |
|
66 |
-
#
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# construct RAG query, send to openai and process response
|
76 |
def run_query(context, label):
|
77 |
'''
|
78 |
For non-streamed completion, enable the following 2 lines and comment out the code below
|
79 |
'''
|
|
|
|
|
80 |
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
81 |
# result = res.choices[0].message.content
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# instantiate ChatCompletion as a generator object (stream is set to True)
|
84 |
-
response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
85 |
# iterate through the streamed output
|
86 |
report = []
|
87 |
res_box = st.empty()
|
@@ -102,3 +235,6 @@ def run_query(context, label):
|
|
102 |
|
103 |
|
104 |
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# # import json
|
3 |
+
# import numpy as np
|
4 |
+
# import pandas as pd
|
5 |
+
# import openai
|
6 |
+
# from haystack.schema import Document
|
7 |
+
# import streamlit as st
|
8 |
+
# from tenacity import retry, stop_after_attempt, wait_random_exponential
|
9 |
+
|
10 |
+
|
11 |
+
# # Get openai API key
|
12 |
+
# # openai.api_key = os.environ["OPENAI_API_KEY"]
|
13 |
+
# hf_token = os.environ["HF_API_KEY"]
|
14 |
+
# #model_select = "gpt-3.5-turbo-0125"
|
15 |
+
# model_select ="gpt-4"
|
16 |
+
|
17 |
+
# # define a special function for putting the prompt together (as we can't use haystack)
|
18 |
+
# def get_prompt(context, label):
|
19 |
+
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
20 |
+
# Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
|
21 |
+
# If there is no mention of "+label+" in the context, return nothing. \
|
22 |
+
# Formatting example: \
|
23 |
+
# - Bullet point 1 \
|
24 |
+
# - Bullet point 2 \
|
25 |
+
# "
|
26 |
+
|
27 |
+
# # Add the meta data for references
|
28 |
+
# # context = ' - '.join([d.content for d in docs])
|
29 |
+
# prompt = base_prompt+"; Context: "+context+"; Answer:"
|
30 |
+
|
31 |
+
# return prompt
|
32 |
+
|
33 |
+
# # def get_prompt(context, label):
|
34 |
+
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
35 |
+
# # Summarize only elements of the context that address vulnerability to climate change. \
|
36 |
+
# # Formatting example: \
|
37 |
+
# # - Bullet point 1 \
|
38 |
+
# # - Bullet point 2 \
|
39 |
+
# # "
|
40 |
+
|
41 |
+
# # # Add the meta data for references
|
42 |
+
# # # context = ' - '.join([d.content for d in docs])
|
43 |
+
# # prompt = base_prompt+"; Context: "+context+"; Answer:"
|
44 |
+
|
45 |
+
# # return prompt
|
46 |
+
|
47 |
+
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
|
48 |
+
# # Summarize only activities that address the vulnerability of "+label+" to climate change. \
|
49 |
+
# # Formatting example: \
|
50 |
+
# # - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
|
51 |
+
# # - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
|
52 |
+
# # "
|
53 |
+
# # # convert df rows to Document object so we can feed it into the summarizer easily
|
54 |
+
# # def get_document(df):
|
55 |
+
# # # we take a list of each extract
|
56 |
+
# # ls_dict = []
|
57 |
+
# # for index, row in df.iterrows():
|
58 |
+
# # # Create a Document object for each row (we only need the text)
|
59 |
+
# # doc = Document(
|
60 |
+
# # row['text'],
|
61 |
+
# # meta={
|
62 |
+
# # 'label': row['Vulnerability Label']}
|
63 |
+
# # )
|
64 |
+
# # # Append the Document object to the documents list
|
65 |
+
# # ls_dict.append(doc)
|
66 |
+
|
67 |
+
# # return ls_dict
|
68 |
+
|
69 |
+
|
70 |
+
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
71 |
+
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
72 |
+
# def completion_with_backoff(**kwargs):
|
73 |
+
# return openai.ChatCompletion.create(**kwargs)
|
74 |
+
|
75 |
+
|
76 |
+
# # construct RAG query, send to openai and process response
|
77 |
+
# def run_query(context, label):
|
78 |
+
# '''
|
79 |
+
# For non-streamed completion, enable the following 2 lines and comment out the code below
|
80 |
+
# '''
|
81 |
+
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
82 |
+
# # result = res.choices[0].message.content
|
83 |
+
|
84 |
+
# # instantiate ChatCompletion as a generator object (stream is set to True)
|
85 |
+
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
86 |
+
# # iterate through the streamed output
|
87 |
+
# report = []
|
88 |
+
# res_box = st.empty()
|
89 |
+
# for chunk in response:
|
90 |
+
# # extract the object containing the text (totally different structure when streaming)
|
91 |
+
# chunk_message = chunk['choices'][0]['delta']
|
92 |
+
# # test to make sure there is text in the object (some don't have)
|
93 |
+
# if 'content' in chunk_message:
|
94 |
+
# report.append(chunk_message.content) # extract the message
|
95 |
+
# # add the latest text and merge it with all previous
|
96 |
+
# result = "".join(report).strip()
|
97 |
+
# # res_box.success(result) # output to response text box
|
98 |
+
# res_box.success(result)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
import os
|
103 |
# import json
|
104 |
import numpy as np
|
|
|
107 |
from haystack.schema import Document
|
108 |
import streamlit as st
|
109 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
110 |
+
from huggingface_hub import InferenceClient
|
111 |
|
112 |
|
113 |
# Get openai API key
|
114 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
115 |
+
|
|
|
116 |
|
117 |
# define a special function for putting the prompt together (as we can't use haystack)
|
118 |
def get_prompt(context, label):
|
|
|
130 |
|
131 |
return prompt
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
137 |
+
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
138 |
+
# def completion_with_backoff(**kwargs):
|
139 |
+
# return openai.ChatCompletion.create(**kwargs)
|
140 |
|
141 |
|
142 |
+
def get_prompt(context, label):
|
143 |
+
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
144 |
+
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
|
145 |
+
If there is no mention of "+label+" in the context, return nothing. \
|
146 |
+
Do not include an introduction sentence, just the bullet points as per below. \
|
147 |
+
Formatting example: \
|
148 |
+
- Bullet point 1 \
|
149 |
+
- Bullet point 2 \
|
150 |
+
"
|
151 |
+
|
152 |
+
# Add the meta data for references
|
153 |
+
# context = ' - '.join([d.content for d in docs])
|
154 |
+
prompt = base_prompt+"; Context: "+context+"; Answer:"
|
155 |
+
|
156 |
+
return prompt
|
157 |
|
158 |
|
159 |
+
# # construct RAG query, send to openai and process response
|
160 |
+
# def run_query(context, label, chatbot_role):
|
161 |
+
# '''
|
162 |
+
# For non-streamed completion, enable the following 2 lines and comment out the code below
|
163 |
+
# '''
|
164 |
+
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
165 |
+
# # result = res.choices[0].message.content
|
166 |
+
|
167 |
+
# messages = [
|
168 |
+
# ChatMessage(role="system", content=chatbot_role),
|
169 |
+
# ChatMessage(role="user", content=get_prompt(context, label)),
|
170 |
+
# ]
|
171 |
+
# response = llm.chat(messages)
|
172 |
+
# return(response)
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
177 |
+
# "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
178 |
+
# token=hf_token,
|
179 |
+
# )
|
180 |
+
|
181 |
+
# stopping_ids = [
|
182 |
+
# tokenizer.eos_token_id,
|
183 |
+
# tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
184 |
+
# ]
|
185 |
+
|
186 |
+
# Define the role of the chatbot
|
187 |
+
# chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
188 |
+
|
189 |
# construct RAG query, send to openai and process response
|
190 |
def run_query(context, label):
|
191 |
'''
|
192 |
For non-streamed completion, enable the following 2 lines and comment out the code below
|
193 |
'''
|
194 |
+
chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
195 |
+
|
196 |
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
197 |
# result = res.choices[0].message.content
|
198 |
|
199 |
+
# Initialize the client, pointing it to one of the available models
|
200 |
+
client = InferenceClient()
|
201 |
+
|
202 |
+
response = client.chat.completions.create(
|
203 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
204 |
+
messages=[
|
205 |
+
ChatMessage(role="system", content=chatbot_role),
|
206 |
+
ChatMessage(role="user", content=get_prompt(context, label)),
|
207 |
+
],
|
208 |
+
stream=True,
|
209 |
+
max_tokens=500
|
210 |
+
)
|
211 |
+
|
212 |
+
# iterate and print stream
|
213 |
+
for message in chat_completion:
|
214 |
+
print(message.choices[0].delta.content, end="")
|
215 |
+
|
216 |
# instantiate ChatCompletion as a generator object (stream is set to True)
|
217 |
+
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
218 |
# iterate through the streamed output
|
219 |
report = []
|
220 |
res_box = st.empty()
|
|
|
235 |
|
236 |
|
237 |
|
238 |
+
|
239 |
+
|
240 |
+
|