import os import gc import tempfile import uuid import pandas as pd import streamlit as st from llama_index.core import Settings from llama_index.llms.cerebras import Cerebras from llama_index.core import PromptTemplate from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding, EncodingFormat from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.readers.docling import DoclingReader from llama_index.core.node_parser import MarkdownNodeParser from llama_index.core.llms import ChatMessage if "id" not in st.session_state: st.session_state.id = uuid.uuid4() st.session_state.file_cache = {} session_id = st.session_state.id client = None # Initialize Cerebras LLM (ensure it is available across the app) def load_llm(): # Ensure you have the API Key set in your environment or via input api_key = os.getenv("CEREBRAS_API_KEY") llm = Cerebras(model="llama-3.3-70b", api_key=api_key) return llm def reset_chat(): st.session_state.messages = [] st.session_state.context = None gc.collect() def display_excel(file): st.markdown("### Excel Preview") # Read the Excel file df = pd.read_excel(file) # Display the dataframe st.dataframe(df) with st.sidebar: st.header(f"Add your documents!") uploaded_file = st.file_uploader("Choose your `.xlsx` file", type=["xlsx", "xls"]) if uploaded_file: try: with tempfile.TemporaryDirectory() as temp_dir: file_path = os.path.join(temp_dir, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getvalue()) file_key = f"{session_id}-{uploaded_file.name}" st.write("Indexing your document...") if file_key not in st.session_state.get('file_cache', {}): if os.path.exists(temp_dir): reader = DoclingReader() loader = SimpleDirectoryReader( input_dir=temp_dir, file_extractor={".xlsx": reader}, ) else: st.error('Could not find the file you uploaded, please check again...') st.stop() docs = loader.load_data() # Setup llm & embedding model llm = load_llm() # Use Mixedbread AI Embedding instead of HuggingFaceEmbedding mixedbread_api_key = os.getenv("MXBAI_API_KEY") embed_model = MixedbreadAIEmbedding(api_key=mixedbread_api_key, model_name="mixedbread-ai/mxbai-embed-large-v1") # Creating an index over loaded data Settings.embed_model = embed_model node_parser = MarkdownNodeParser() index = VectorStoreIndex.from_documents(documents=docs, transformations=[node_parser], show_progress=True) # Create the query engine Settings.llm = llm query_engine = index.as_query_engine(streaming=True) # Customise prompt template qa_prompt_tmpl_str = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information above I want you to think step by step to answer the query in a highly precise and crisp manner focused on the final answer, in case you don't know the answer say 'I don't know!'.\n" "Query: {query_str}\n" "Answer: " ) qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str) query_engine.update_prompts( {"response_synthesizer:text_qa_template": qa_prompt_tmpl} ) st.session_state.file_cache[file_key] = query_engine else: query_engine = st.session_state.file_cache[file_key] # Inform the user that the file is processed and Display the Excel uploaded st.success("Ready to Chat!") display_excel(uploaded_file) except Exception as e: st.error(f"An error occurred: {e}") st.stop() col1, col2 = st.columns([6, 1]) with col1: st.header(f"RAG over Excel using DuckLink 🐥 & Llama-3.3-70B") with col2: st.button("Clear ↺", on_click=reset_chat) # Initialize chat history if "messages" not in st.session_state: reset_chat() # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("What's up?"): # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Display assistant response in chat message container with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" # Simulate stream of response with milliseconds delay streaming_response = query_engine.query(prompt) for chunk in streaming_response.response_gen: full_response += chunk message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": full_response})