File size: 11,241 Bytes
c440f41 586e4bb 002be3a 586e4bb 002be3a c440f41 586e4bb c440f41 002be3a c440f41 586e4bb c440f41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr import cv2 import numpy as np import tempfile import os import requests from dds_cloudapi_sdk import Config, Client from dds_cloudapi_sdk.tasks.dinox import DinoxTask from dds_cloudapi_sdk import TextPrompt from dds_cloudapi_sdk.tasks.types import DetectionTarget from roboflow import Roboflow from dotenv import load_dotenv # ========== Konfigurasi ========== load_dotenv() # Roboflow Config rf_api_key = os.getenv("ROBOFLOW_API_KEY") workspace = os.getenv("ROBOFLOW_WORKSPACE") project_name = os.getenv("ROBOFLOW_PROJECT") model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) # DINO-X Config DINOX_API_KEY = os.getenv("DINO_X_API_KEY") DINOX_PROMPT = "beverage . bottle . cans . boxed milk . milk" # Inisialisasi Model YOLO (Roboflow) rf = Roboflow(api_key=rf_api_key) project = rf.workspace(workspace).project(project_name) yolo_model = project.version(model_version).model # Inisialisasi DINO-X API Client dinox_config = Config(DINOX_API_KEY) dinox_client = Client(dinox_config) # Fungsi untuk mendeteksi objek pada gambar dan video def detect_combined(image_path_or_video_path, is_video=False): # Jika input adalah video if is_video: return detect_objects_in_video(image_path_or_video_path) # Jika input adalah gambar return detect_objects_in_image(image_path_or_video_path) def detect_objects_in_image(image_path): try: # Membaca gambar img = cv2.imread(image_path) # --- Deteksi menggunakan YOLO (Nestlé) --- yolo_pred = yolo_model.predict(image_path, confidence=50, overlap=80).json() # Hitung produk Nestlé per kelas nestle_class_count = {} nestle_boxes = [] for pred in yolo_pred['predictions']: class_name = pred['class'] nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) # --- Deteksi menggunakan DINO-X (Unclassified Products) --- image_url = dinox_client.upload_file(image_path) task = DinoxTask( image_url=image_url, prompts=[TextPrompt(text=DINOX_PROMPT)], bbox_threshold=0.25, targets=[DetectionTarget.BBox] ) dinox_client.run_task(task) dinox_pred = task.result.objects # Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO competitor_class_count = {} competitor_boxes = [] for obj in dinox_pred: dinox_box = obj.bbox # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection) if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections class_name = obj.category.strip().lower() competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 competitor_boxes.append({ "class": class_name, "box": dinox_box, "confidence": obj.score }) # --- Overlay Teks untuk Total Produk --- nestle_count_text = "" total_nestle = 0 for class_name, count in nestle_class_count.items(): nestle_count_text += f"{class_name}: {count}\n" total_nestle += count nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}" unclassified_count_text = "" total_unclassified = 0 for class_name, count in competitor_class_count.items(): unclassified_count_text += f"{class_name}: {count}\n" total_unclassified += count unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}" # --- Visualisasi Deteksi YOLO (Nestlé) --- for pred in yolo_pred['predictions']: x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2) cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2) # --- Visualisasi Deteksi DINO-X (Unclassified) --- for comp in competitor_boxes: x1, y1, x2, y2 = comp['box'] display_name = "unclassified" cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2) cv2.putText(img, f"{display_name} {comp['confidence']:.2f}", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # Simpan gambar output output_path = "/tmp/combined_output_image.jpg" cv2.imwrite(output_path, img) return output_path, nestle_count_text + "\n" + unclassified_count_text except Exception as e: return image_path, f"Error: {str(e)}" def detect_objects_in_video(video_path): temp_output_path = "/tmp/output_video.mp4" temp_frames_dir = tempfile.mkdtemp() frame_count = 0 previous_detections = {} # Untuk menyimpan deteksi objek dari frame sebelumnya # Membuka video video = cv2.VideoCapture(video_path) frame_rate = int(video.get(cv2.CAP_PROP_FPS)) frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_size = (frame_width, frame_height) # VideoWriter untuk menyimpan hasil video fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size) while True: ret, frame = video.read() if not ret: break # Simpan frame sementara untuk prediksi frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg") cv2.imwrite(frame_path, frame) # --- Deteksi menggunakan YOLO (Nestlé) --- yolo_pred = yolo_model.predict(frame_path, confidence=50, overlap=80).json() # Hitung produk Nestlé per kelas nestle_class_count = {} nestle_boxes = [] for pred in yolo_pred['predictions']: class_name = pred['class'] nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) # --- Deteksi menggunakan DINO-X (Unclassified Products) --- image_url = dinox_client.upload_file(frame_path) task = DinoxTask( image_url=image_url, prompts=[TextPrompt(text=DINOX_PROMPT)], bbox_threshold=0.25, targets=[DetectionTarget.BBox] ) dinox_client.run_task(task) dinox_pred = task.result.objects # Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO competitor_class_count = {} competitor_boxes = [] for obj in dinox_pred: dinox_box = obj.bbox # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection) if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections class_name = obj.category.strip().lower() competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 competitor_boxes.append({ "class": class_name, "box": dinox_box, "confidence": obj.score }) # --- Overlay Teks untuk Total Produk --- nestle_count_text = "" total_nestle = 0 for class_name, count in nestle_class_count.items(): nestle_count_text += f"{class_name}: {count}\n" total_nestle += count nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}" unclassified_count_text = "" total_unclassified = 0 for class_name, count in competitor_class_count.items(): unclassified_count_text += f"{class_name}: {count}\n" total_unclassified += count unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}" # Overlay teks ke frame y_offset = 20 for line in nestle_count_text.split("\n"): cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) y_offset += 30 y_offset += 30 # Slight gap between sections for line in unclassified_count_text.split("\n"): cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) y_offset += 30 # --- Visualisasi Deteksi YOLO (Nestlé) --- for pred in yolo_pred['predictions']: x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2) cv2.putText(frame, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2) # --- Visualisasi Deteksi DINO-X (Unclassified) --- for comp in competitor_boxes: x1, y1, x2, y2 = comp['box'] display_name = "unclassified" cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2) cv2.putText(frame, f"{display_name} {comp['confidence']:.2f}", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # Tulis frame ke video output output_video.write(frame) frame_count += 1 video.release() output_video.release() return temp_output_path def is_overlap(box1, boxes2, threshold=0.3): # Fungsi untuk deteksi overlap bounding box x1_min, y1_min, x1_max, y1_max = box1 for b2 in boxes2: x2, y2, w2, h2 = b2 x2_min = x2 - w2/2 x2_max = x2 + w2/2 y2_min = y2 - h2/2 y2_max = y2 + h2/2 # Hitung area overlap dx = min(x1_max, x2_max) - max(x1_min, x2_min) dy = min(y1_max, y2_max) - max(y1_min, y2_min) if (dx >= 0) and (dy >= 0): area_overlap = dx * dy area_box1 = (x1_max - x1_min) * (y1_max - y1_min) if area_overlap / area_box1 > threshold: return True return False # ========== Gradio Interface ========== with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface: gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input Image") detect_image_button = gr.Button("Detect Image") output_image = gr.Image(label="Detect Object") output_text = gr.Textbox(label="Counting Object") detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text]) with gr.Column(): input_video = gr.Video(label="Input Video") detect_video_button = gr.Button("Detect Video") output_video = gr.Video(label="Output Video") detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video]) iface.launch() |