File size: 11,241 Bytes
c440f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586e4bb
002be3a
 
 
586e4bb
002be3a
c440f41
 
 
 
 
 
586e4bb
c440f41
 
 
002be3a
c440f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586e4bb
c440f41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import requests
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk import TextPrompt
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from roboflow import Roboflow
from dotenv import load_dotenv

# ========== Konfigurasi ========== 
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle . cans . boxed milk . milk"

# Inisialisasi Model YOLO (Roboflow)
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# Inisialisasi DINO-X API Client
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)

# Fungsi untuk mendeteksi objek pada gambar dan video
def detect_combined(image_path_or_video_path, is_video=False):
    # Jika input adalah video
    if is_video:
        return detect_objects_in_video(image_path_or_video_path)
    
    # Jika input adalah gambar
    return detect_objects_in_image(image_path_or_video_path)

def detect_objects_in_image(image_path):
    try:
        # Membaca gambar
        img = cv2.imread(image_path)

        # --- Deteksi menggunakan YOLO (Nestlé) ---
        yolo_pred = yolo_model.predict(image_path, confidence=50, overlap=80).json()

        # Hitung produk Nestlé per kelas
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        # --- Deteksi menggunakan DINO-X (Unclassified Products) ---
        image_url = dinox_client.upload_file(image_path)
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=DINOX_PROMPT)],
            bbox_threshold=0.25,
            targets=[DetectionTarget.BBox]
        )
        dinox_client.run_task(task)
        dinox_pred = task.result.objects

        # Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO
        competitor_class_count = {}
        competitor_boxes = []
        for obj in dinox_pred:
            dinox_box = obj.bbox
            # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
            if not is_overlap(dinox_box, nestle_boxes):  # Ignore if overlap with YOLO detections
                class_name = obj.category.strip().lower()
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": dinox_box,
                    "confidence": obj.score
                })

        # --- Overlay Teks untuk Total Produk ---
        nestle_count_text = ""
        total_nestle = 0
        for class_name, count in nestle_class_count.items():
            nestle_count_text += f"{class_name}: {count}\n"
            total_nestle += count
        nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"

        unclassified_count_text = ""
        total_unclassified = 0
        for class_name, count in competitor_class_count.items():
            unclassified_count_text += f"{class_name}: {count}\n"
            total_unclassified += count
        unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"

        # --- Visualisasi Deteksi YOLO (Nestlé) ---
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
            cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)

        # --- Visualisasi Deteksi DINO-X (Unclassified) ---
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            display_name = "unclassified"
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
                        (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

        # Simpan gambar output
        output_path = "/tmp/combined_output_image.jpg"
        cv2.imwrite(output_path, img)

        return output_path, nestle_count_text + "\n" + unclassified_count_text

    except Exception as e:
        return image_path, f"Error: {str(e)}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    frame_count = 0
    previous_detections = {}  # Untuk menyimpan deteksi objek dari frame sebelumnya

    # Membuka video
    video = cv2.VideoCapture(video_path)
    frame_rate = int(video.get(cv2.CAP_PROP_FPS))
    frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_size = (frame_width, frame_height)

    # VideoWriter untuk menyimpan hasil video
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

    while True:
        ret, frame = video.read()
        if not ret:
            break

        # Simpan frame sementara untuk prediksi
        frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
        cv2.imwrite(frame_path, frame)

        # --- Deteksi menggunakan YOLO (Nestlé) ---
        yolo_pred = yolo_model.predict(frame_path, confidence=50, overlap=80).json()

        # Hitung produk Nestlé per kelas
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        # --- Deteksi menggunakan DINO-X (Unclassified Products) ---
        image_url = dinox_client.upload_file(frame_path)
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=DINOX_PROMPT)],
            bbox_threshold=0.25,
            targets=[DetectionTarget.BBox]
        )
        dinox_client.run_task(task)
        dinox_pred = task.result.objects

        # Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO
        competitor_class_count = {}
        competitor_boxes = []
        for obj in dinox_pred:
            dinox_box = obj.bbox
            # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
            if not is_overlap(dinox_box, nestle_boxes):  # Ignore if overlap with YOLO detections
                class_name = obj.category.strip().lower()
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": dinox_box,
                    "confidence": obj.score
                })

        # --- Overlay Teks untuk Total Produk ---
        nestle_count_text = ""
        total_nestle = 0
        for class_name, count in nestle_class_count.items():
            nestle_count_text += f"{class_name}: {count}\n"
            total_nestle += count
        nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"

        unclassified_count_text = ""
        total_unclassified = 0
        for class_name, count in competitor_class_count.items():
            unclassified_count_text += f"{class_name}: {count}\n"
            total_unclassified += count
        unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"

        # Overlay teks ke frame
        y_offset = 20
        for line in nestle_count_text.split("\n"):
            cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
            y_offset += 30

        y_offset += 30  # Slight gap between sections
        for line in unclassified_count_text.split("\n"):
            cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
            y_offset += 30

        # --- Visualisasi Deteksi YOLO (Nestlé) ---
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
            cv2.putText(frame, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)

        # --- Visualisasi Deteksi DINO-X (Unclassified) ---
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            display_name = "unclassified"
            cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(frame, f"{display_name} {comp['confidence']:.2f}",
                        (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

        # Tulis frame ke video output
        output_video.write(frame)
        frame_count += 1

    video.release()
    output_video.release()

    return temp_output_path

def is_overlap(box1, boxes2, threshold=0.3):
    # Fungsi untuk deteksi overlap bounding box
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2

        # Hitung area overlap
        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Gradio Interface ========== 
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])

        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])

iface.launch()