testing-roboflow / app-dino.py
muhammadsalmanalfaridzi's picture
Update app-dino.py
2d2c726 verified
raw
history blame
5.82 kB
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import supervision as sv
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . food . drink . bottle" # Customize sesuai produk kompetitor
# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()
# Hitung per class Nestlé
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] DINO-X: Deteksi Kompetitor ==========
image_url = dinox_client.upload_file(temp_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=DINOX_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox]
)
dinox_client.run_task(task)
dinox_pred = task.result.objects
# Filter & Hitung Kompetitor
competitor_class_count = {}
competitor_boxes = []
for obj in dinox_pred:
dinox_box = obj.bbox
if not is_overlap(dinox_box, nestle_boxes):
class_name = obj.category.strip().lower() # Normalisasi nama kelas
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": dinox_box,
"confidence": obj.score
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"
result_text += "Competitor Products\n\n"
if competitor_class_count:
for class_name, count in competitor_class_count.items():
result_text += f"{class_name}: {count}\n"
else:
result_text += "No competitors detected\n"
result_text += f"\nTotal Competitor: {total_competitor}"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# Kompetitor (Merah)
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
def is_overlap(box1, boxes2, threshold=0.3):
# Fungsi untuk deteksi overlap bounding box
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
# Hitung area overlap
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Gradio Interface ==========
with gr.Blocks() as iface:
with gr.Row():
input_image = gr.Image(type="pil", label="Input Image")
output_image = gr.Image(label="Detection Result")
output_text = gr.Textbox(label="Product Counts")
detect_button = gr.Button("Detect Products")
detect_button.click(
fn=detect_combined,
inputs=input_image,
outputs=[output_image, output_text]
)
iface.launch()