testing-roboflow / app-ori.py
muhammadsalmanalfaridzi's picture
Rename app.py to app-ori.py
a873927 verified
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
# Muat variabel lingkungan dari file .env
load_dotenv()
api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# Inisialisasi Roboflow menggunakan data yang diambil dari secrets
rf = Roboflow(api_key=api_key)
project = rf.workspace(workspace).project(project_name)
model = project.version(model_version).model
# Fungsi untuk menangani input dan output gambar
def detect_objects(image):
# Simpan gambar yang diupload sebagai file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
try:
# Lakukan prediksi pada gambar
predictions = model.predict(temp_file_path, confidence=55, overlap=80).json()
# Menghitung jumlah objek per kelas
class_count = {}
total_count = 0 # Menyimpan total jumlah objek
for prediction in predictions['predictions']:
class_name = prediction['class']
class_count[class_name] = class_count.get(class_name, 0) + 1
total_count += 1 # Tambah jumlah objek untuk setiap prediksi
# Menyusun output berupa string hasil perhitungan
result_text = "Product Nestle\n\n"
for class_name, count in class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Product Nestle: {total_count}"
# Menyimpan gambar dengan prediksi
output_image_path = "/tmp/prediction.jpg"
model.predict(temp_file_path, confidence=55, overlap=80).save(output_image_path)
except requests.exceptions.HTTPError as http_err:
# Menangani kesalahan HTTP
result_text = f"HTTP error occurred: {http_err}"
output_image_path = temp_file_path # Kembalikan gambar asli jika terjadi error
except Exception as err:
# Menangani kesalahan lain
result_text = f"An error occurred: {err}"
output_image_path = temp_file_path # Kembalikan gambar asli jika terjadi error
# Hapus file sementara setelah prediksi
os.remove(temp_file_path)
return output_image_path, result_text
# Membuat antarmuka Gradio dengan tata letak fleksibel
with gr.Blocks() as iface:
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Column():
output_image = gr.Image(label="Detect Object")
with gr.Column():
output_text = gr.Textbox(label="Counting Object")
# Tombol untuk memproses input
detect_button = gr.Button("Detect")
# Hubungkan tombol dengan fungsi deteksi
detect_button.click(
fn=detect_objects,
inputs=input_image,
outputs=[output_image, output_text]
)
# Menjalankan antarmuka
iface.launch()