import gradio as gr import supervision as sv import numpy as np import cv2 from inference import get_roboflow_model from dotenv import load_dotenv import os # Load environment variables from .env file load_dotenv() api_key = os.getenv("ROBOFLOW_API_KEY") model_id = os.getenv("ROBOFLOW_PROJECT") model_version = os.getenv("ROBOFLOW_MODEL_VERSION") # Initialize the Roboflow model model = get_roboflow_model(model_id=f"{model_id}/{model_version}", api_key=api_key) # Callback function for SAHI Slicer def callback(image_slice: np.ndarray) -> sv.Detections: results = model.infer(image_slice)[0] return sv.Detections.from_inference(results) # Object detection function def detect_objects_with_sahi(image): # Convert Gradio PIL image to NumPy array image_np = np.array(image) # Run inference with SAHI Slicer slicer = sv.InferenceSlicer(callback=callback, overlap_wh=(50, 50), overlap_ratio_wh=None) sliced_detections = slicer(image=image_np) # Annotate image with detected objects label_annotator = sv.LabelAnnotator() box_annotator = sv.BoxAnnotator() annotated_image = box_annotator.annotate(scene=image_np.copy(), detections=sliced_detections) annotated_image = label_annotator.annotate(scene=annotated_image, detections=sliced_detections) # Count objects by class class_counts = {} for i in range(len(sliced_detections.class_id)): # Iterate over the detections class_name = sliced_detections.class_id[i] class_counts[class_name] = class_counts.get(class_name, 0) + 1 # Create summary text total_objects = sum(class_counts.values()) result_text = "Detected Objects:\n" for class_name, count in class_counts.items(): result_text += f"{class_name}: {count}\n" result_text += f"\nTotal Objects: {total_objects}" # Return the annotated image and summary text return annotated_image, result_text # Create Gradio interface with gr.Blocks() as app: with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Upload Image") detect_button = gr.Button("Detect Objects") with gr.Column(): output_image = gr.Image(label="Annotated Image") output_text = gr.Textbox(label="Object Count Summary", lines=10) # Link button to detection function detect_button.click( fn=detect_objects_with_sahi, inputs=input_image, outputs=[output_image, output_text] ) # Launch Gradio app app.launch()