File size: 20,424 Bytes
18d2806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.


import copy
import json
import os
from typing import Any, Dict, Optional

import torch
import torch.nn as nn
from diffusers.models import UNet2DConditionModel
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
from einops import rearrange


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
    return ff_output


class Basic2p5DTransformerBlock(torch.nn.Module):
    def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None:
        super().__init__()
        self.transformer = transformer
        self.layer_name = layer_name
        self.use_ma = use_ma
        self.use_ra = use_ra

        # multiview attn
        if self.use_ma:
            self.attn_multiview = Attention(
                query_dim=self.dim,
                heads=self.num_attention_heads,
                dim_head=self.attention_head_dim,
                dropout=self.dropout,
                bias=self.attention_bias,
                cross_attention_dim=None,
                upcast_attention=self.attn1.upcast_attention,
                out_bias=True,
            )

        # ref attn
        if self.use_ra:
            self.attn_refview = Attention(
                query_dim=self.dim,
                heads=self.num_attention_heads,
                dim_head=self.attention_head_dim,
                dropout=self.dropout,
                bias=self.attention_bias,
                cross_attention_dim=None,
                upcast_attention=self.attn1.upcast_attention,
                out_bias=True,
            )

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.transformer, name)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.Tensor:

        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
        mode = cross_attention_kwargs.pop('mode', None)
        mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
        ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
        condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)

        if self.norm_type == "ada_norm":
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.norm_type == "ada_norm_zero":
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
            norm_hidden_states = self.norm1(hidden_states)
        elif self.norm_type == "ada_norm_continuous":
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
        elif self.norm_type == "ada_norm_single":
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        else:
            raise ValueError("Incorrect norm used")

        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

        # 1. Prepare GLIGEN inputs
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

        if self.norm_type == "ada_norm_zero":
            attn_output = gate_msa.unsqueeze(1) * attn_output
        elif self.norm_type == "ada_norm_single":
            attn_output = gate_msa * attn_output

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        # 1.2 Reference Attention
        if 'w' in mode:
            condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c',
                                                              n=num_in_batch)  # B, (N L), C

        if 'r' in mode and self.use_ra:
            condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1,
                                                                                        1)  # B N L C
            condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')

            attn_output = self.attn_refview(
                norm_hidden_states,
                encoder_hidden_states=condition_embed,
                attention_mask=None,
                **cross_attention_kwargs
            )
            ref_scale_timing = ref_scale
            if isinstance(ref_scale, torch.Tensor):
                ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
                for _ in range(attn_output.ndim - 1):
                    ref_scale_timing = ref_scale_timing.unsqueeze(-1)
            hidden_states = ref_scale_timing * attn_output + hidden_states
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)

        # 1.3 Multiview Attention
        if num_in_batch > 1 and self.use_ma:
            multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)

            attn_output = self.attn_multiview(
                multivew_hidden_states,
                encoder_hidden_states=multivew_hidden_states,
                **cross_attention_kwargs
            )

            attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)

            hidden_states = mva_scale * attn_output + hidden_states
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)

        # 1.2 GLIGEN Control
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

        # 3. Cross-Attention
        if self.attn2 is not None:
            if self.norm_type == "ada_norm":
                norm_hidden_states = self.norm2(hidden_states, timestep)
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
                norm_hidden_states = self.norm2(hidden_states)
            elif self.norm_type == "ada_norm_single":
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
            elif self.norm_type == "ada_norm_continuous":
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
            else:
                raise ValueError("Incorrect norm")

            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )

            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
        elif not self.norm_type == "ada_norm_single":
            norm_hidden_states = self.norm3(hidden_states)

        if self.norm_type == "ada_norm_zero":
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        if self.norm_type == "ada_norm_single":
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.norm_type == "ada_norm_zero":
            ff_output = gate_mlp.unsqueeze(1) * ff_output
        elif self.norm_type == "ada_norm_single":
            ff_output = gate_mlp * ff_output

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


class UNet2p5DConditionModel(torch.nn.Module):
    def __init__(self, unet: UNet2DConditionModel) -> None:
        super().__init__()
        self.unet = unet

        self.use_ma = True
        self.use_ra = True
        self.use_camera_embedding = True
        self.use_dual_stream = True

        if self.use_dual_stream:
            self.unet_dual = copy.deepcopy(unet)
            self.init_attention(self.unet_dual)
        self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra)
        self.init_condition()
        self.init_camera_embedding()

    @staticmethod
    def from_pretrained(pretrained_model_name_or_path, **kwargs):
        torch_dtype = kwargs.pop('torch_dtype', torch.float32)
        config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
        unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
        with open(config_path, 'r', encoding='utf-8') as file:
            config = json.load(file)
        unet = UNet2DConditionModel(**config)
        unet = UNet2p5DConditionModel(unet)
        unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
        unet.load_state_dict(unet_ckpt, strict=True)
        unet = unet.to(torch_dtype)
        return unet

    def init_condition(self):
        self.unet.conv_in = torch.nn.Conv2d(
            12,
            self.unet.conv_in.out_channels,
            kernel_size=self.unet.conv_in.kernel_size,
            stride=self.unet.conv_in.stride,
            padding=self.unet.conv_in.padding,
            dilation=self.unet.conv_in.dilation,
            groups=self.unet.conv_in.groups,
            bias=self.unet.conv_in.bias is not None)

        self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024))
        self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024))

    def init_camera_embedding(self):

        if self.use_camera_embedding:
            time_embed_dim = 1280
            self.max_num_ref_image = 5
            self.max_num_gen_image = 12 * 3 + 4 * 2
            self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim)

    def init_attention(self, unet, use_ma=False, use_ra=False):

        for down_block_i, down_block in enumerate(unet.down_blocks):
            if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
                for attn_i, attn in enumerate(down_block.attentions):
                    for transformer_i, transformer in enumerate(attn.transformer_blocks):
                        if isinstance(transformer, BasicTransformerBlock):
                            attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer,
                                                                                               f'down_{down_block_i}_{attn_i}_{transformer_i}',
                                                                                               use_ma, use_ra)

        if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
            for attn_i, attn in enumerate(unet.mid_block.attentions):
                for transformer_i, transformer in enumerate(attn.transformer_blocks):
                    if isinstance(transformer, BasicTransformerBlock):
                        attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer,
                                                                                           f'mid_{attn_i}_{transformer_i}',
                                                                                           use_ma, use_ra)

        for up_block_i, up_block in enumerate(unet.up_blocks):
            if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
                for attn_i, attn in enumerate(up_block.attentions):
                    for transformer_i, transformer in enumerate(attn.transformer_blocks):
                        if isinstance(transformer, BasicTransformerBlock):
                            attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer,
                                                                                               f'up_{up_block_i}_{attn_i}_{transformer_i}',
                                                                                               use_ma, use_ra)

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.unet, name)

    def forward(
        self, sample, timestep, encoder_hidden_states,
        *args, down_intrablock_additional_residuals=None,
        down_block_res_samples=None, mid_block_res_sample=None,
        **cached_condition,
    ):
        B, N_gen, _, H, W = sample.shape
        assert H == W

        if self.use_camera_embedding:
            camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
            camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
        else:
            camera_info_gen = None

        sample = [sample]
        if 'normal_imgs' in cached_condition:
            sample.append(cached_condition["normal_imgs"])
        if 'position_imgs' in cached_condition:
            sample.append(cached_condition["position_imgs"])
        sample = torch.cat(sample, dim=2)

        sample = rearrange(sample, 'b n c h w -> (b n) c h w')

        encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
        encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')

        if self.use_ra:
            if 'condition_embed_dict' in cached_condition:
                condition_embed_dict = cached_condition['condition_embed_dict']
            else:
                condition_embed_dict = {}
                ref_latents = cached_condition['ref_latents']
                N_ref = ref_latents.shape[1]
                if self.use_camera_embedding:
                    camera_info_ref = cached_condition['camera_info_ref']
                    camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
                else:
                    camera_info_ref = None

                ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')

                encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
                encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')

                noisy_ref_latents = ref_latents
                timestep_ref = 0

                if self.use_dual_stream:
                    unet_ref = self.unet_dual
                else:
                    unet_ref = self.unet
                unet_ref(
                    noisy_ref_latents, timestep_ref,
                    encoder_hidden_states=encoder_hidden_states_ref,
                    class_labels=camera_info_ref,
                    # **kwargs
                    return_dict=False,
                    cross_attention_kwargs={
                        'mode': 'w', 'num_in_batch': N_ref,
                        'condition_embed_dict': condition_embed_dict},
                )
                cached_condition['condition_embed_dict'] = condition_embed_dict
        else:
            condition_embed_dict = None

        mva_scale = cached_condition.get('mva_scale', 1.0)
        ref_scale = cached_condition.get('ref_scale', 1.0)

        return self.unet(
            sample, timestep,
            encoder_hidden_states_gen, *args,
            class_labels=camera_info_gen,
            down_intrablock_additional_residuals=[
                sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
            ] if down_intrablock_additional_residuals is not None else None,
            down_block_additional_residuals=[
                sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
            ] if down_block_res_samples is not None else None,
            mid_block_additional_residual=(
                mid_block_res_sample.to(dtype=self.unet.dtype)
                if mid_block_res_sample is not None else None
            ),
            return_dict=False,
            cross_attention_kwargs={
                'mode': 'r', 'num_in_batch': N_gen,
                'condition_embed_dict': condition_embed_dict,
                'mva_scale': mva_scale,
                'ref_scale': ref_scale,
            },
        )