Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,066 Bytes
18d2806 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from PIL import Image
from .camera_utils import (
transform_pos,
get_mv_matrix,
get_orthographic_projection_matrix,
get_perspective_projection_matrix,
)
from .mesh_processor import meshVerticeInpaint
from .mesh_utils import load_mesh, save_mesh
def stride_from_shape(shape):
stride = [1]
for x in reversed(shape[1:]):
stride.append(stride[-1] * x)
return list(reversed(stride))
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
# input: [..., C], D dimension + C channel
# count: [..., 1], D dimension
# indices: [N, D], long
# values: [N, C]
D = indices.shape[-1]
C = input.shape[-1]
size = input.shape[:-1]
stride = stride_from_shape(size)
assert len(size) == D
input = input.view(-1, C) # [HW, C]
count = count.view(-1, 1)
flatten_indices = (indices * torch.tensor(stride,
dtype=torch.long, device=indices.device)).sum(-1) # [N]
if weights is None:
weights = torch.ones_like(values[..., :1])
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
return input.view(*size, C), count.view(*size, 1)
def linear_grid_put_2d(H, W, coords, values, return_count=False):
# coords: [N, 2], float in [0, 1]
# values: [N, C]
C = values.shape[-1]
indices = coords * torch.tensor(
[H - 1, W - 1], dtype=torch.float32, device=coords.device
)
indices_00 = indices.floor().long() # [N, 2]
indices_00[:, 0].clamp_(0, H - 2)
indices_00[:, 1].clamp_(0, W - 2)
indices_01 = indices_00 + torch.tensor(
[0, 1], dtype=torch.long, device=indices.device
)
indices_10 = indices_00 + torch.tensor(
[1, 0], dtype=torch.long, device=indices.device
)
indices_11 = indices_00 + torch.tensor(
[1, 1], dtype=torch.long, device=indices.device
)
h = indices[..., 0] - indices_00[..., 0].float()
w = indices[..., 1] - indices_00[..., 1].float()
w_00 = (1 - h) * (1 - w)
w_01 = (1 - h) * w
w_10 = h * (1 - w)
w_11 = h * w
result = torch.zeros(H, W, C, device=values.device,
dtype=values.dtype) # [H, W, C]
count = torch.zeros(H, W, 1, device=values.device,
dtype=values.dtype) # [H, W, 1]
weights = torch.ones_like(values[..., :1]) # [N, 1]
result, count = scatter_add_nd_with_count(
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1))
if return_count:
return result, count
mask = (count.squeeze(-1) > 0)
result[mask] = result[mask] / count[mask].repeat(1, C)
return result
class MeshRender():
def __init__(
self,
camera_distance=1.45, camera_type='orth',
default_resolution=1024, texture_size=1024,
use_antialias=True, max_mip_level=None, filter_mode='linear',
bake_mode='linear', raster_mode='cr', device='cuda'):
self.device = device
self.set_default_render_resolution(default_resolution)
self.set_default_texture_resolution(texture_size)
self.camera_distance = camera_distance
self.use_antialias = use_antialias
self.max_mip_level = max_mip_level
self.filter_mode = filter_mode
self.bake_angle_thres = 75
self.bake_unreliable_kernel_size = int(
(2 / 512) * max(self.default_resolution[0], self.default_resolution[1]))
self.bake_mode = bake_mode
self.raster_mode = raster_mode
if self.raster_mode == 'cr':
import custom_rasterizer as cr
self.raster = cr
else:
raise f'No raster named {self.raster_mode}'
if camera_type == 'orth':
self.ortho_scale = 1.2
self.camera_proj_mat = get_orthographic_projection_matrix(
left=-self.ortho_scale * 0.5, right=self.ortho_scale * 0.5,
bottom=-self.ortho_scale * 0.5, top=self.ortho_scale * 0.5,
near=0.1, far=100
)
elif camera_type == 'perspective':
self.camera_proj_mat = get_perspective_projection_matrix(
49.13, self.default_resolution[1] / self.default_resolution[0],
0.01, 100.0
)
else:
raise f'No camera type {camera_type}'
def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True):
if self.raster_mode == 'cr':
rast_out_db = None
if pos.dim() == 2:
pos = pos.unsqueeze(0)
findices, barycentric = self.raster.rasterize(pos, tri, resolution)
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1)
rast_out = rast_out.unsqueeze(0)
else:
raise f'No raster named {self.raster_mode}'
return rast_out, rast_out_db
def raster_interpolate(self, uv, rast_out, uv_idx, rast_db=None, diff_attrs=None):
if self.raster_mode == 'cr':
textd = None
barycentric = rast_out[0, ..., :-1]
findices = rast_out[0, ..., -1]
if uv.dim() == 2:
uv = uv.unsqueeze(0)
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx)
else:
raise f'No raster named {self.raster_mode}'
return textc, textd
def raster_texture(self, tex, uv, uv_da=None, mip_level_bias=None, mip=None, filter_mode='auto',
boundary_mode='wrap', max_mip_level=None):
if self.raster_mode == 'cr':
raise f'Texture is not implemented in cr'
else:
raise f'No raster named {self.raster_mode}'
return color
def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0):
if self.raster_mode == 'cr':
# Antialias has not been supported yet
color = color
else:
raise f'No raster named {self.raster_mode}'
return color
def load_mesh(
self,
mesh,
scale_factor=1.15,
auto_center=True,
):
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh)
self.mesh_copy = mesh
self.set_mesh(vtx_pos, pos_idx,
vtx_uv=vtx_uv, uv_idx=uv_idx,
scale_factor=scale_factor, auto_center=auto_center
)
if texture_data is not None:
self.set_texture(texture_data)
def save_mesh(self):
texture_data = self.get_texture()
texture_data = Image.fromarray((texture_data * 255).astype(np.uint8))
return save_mesh(self.mesh_copy, texture_data)
def set_mesh(
self,
vtx_pos, pos_idx,
vtx_uv=None, uv_idx=None,
scale_factor=1.15, auto_center=True
):
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device).float()
self.pos_idx = torch.from_numpy(pos_idx).to(self.device).to(torch.int)
if (vtx_uv is not None) and (uv_idx is not None):
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device).float()
self.uv_idx = torch.from_numpy(uv_idx).to(self.device).to(torch.int)
else:
self.vtx_uv = None
self.uv_idx = None
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]]
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]]
if (vtx_uv is not None) and (uv_idx is not None):
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1]
if auto_center:
max_bb = (self.vtx_pos - 0).max(0)[0]
min_bb = (self.vtx_pos - 0).min(0)[0]
center = (max_bb + min_bb) / 2
scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0
self.vtx_pos = (self.vtx_pos - center) * \
(scale_factor / float(scale))
self.scale_factor = scale_factor
def set_texture(self, tex):
if isinstance(tex, np.ndarray):
tex = Image.fromarray((tex * 255).astype(np.uint8))
elif isinstance(tex, torch.Tensor):
tex = tex.cpu().numpy()
tex = Image.fromarray((tex * 255).astype(np.uint8))
tex = tex.resize(self.texture_size).convert('RGB')
tex = np.array(tex) / 255.0
self.tex = torch.from_numpy(tex).to(self.device)
self.tex = self.tex.float()
def set_default_render_resolution(self, default_resolution):
if isinstance(default_resolution, int):
default_resolution = (default_resolution, default_resolution)
self.default_resolution = default_resolution
def set_default_texture_resolution(self, texture_size):
if isinstance(texture_size, int):
texture_size = (texture_size, texture_size)
self.texture_size = texture_size
def get_mesh(self):
vtx_pos = self.vtx_pos.cpu().numpy()
pos_idx = self.pos_idx.cpu().numpy()
vtx_uv = self.vtx_uv.cpu().numpy()
uv_idx = self.uv_idx.cpu().numpy()
# 坐标变换的逆变换
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]]
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]]
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1]
return vtx_pos, pos_idx, vtx_uv, uv_idx
def get_texture(self):
return self.tex.cpu().numpy()
def to(self, device):
self.device = device
for attr_name in dir(self):
attr_value = getattr(self, attr_name)
if isinstance(attr_value, torch.Tensor):
setattr(self, attr_name, attr_value.to(self.device))
def color_rgb_to_srgb(self, image):
if isinstance(image, Image.Image):
image_rgb = torch.tesnor(
np.array(image) /
255.0).float().to(
self.device)
elif isinstance(image, np.ndarray):
image_rgb = torch.tensor(image).float()
else:
image_rgb = image.to(self.device)
image_srgb = torch.where(
image_rgb <= 0.0031308,
12.92 * image_rgb,
1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055
)
if isinstance(image, Image.Image):
image_srgb = Image.fromarray(
(image_srgb.cpu().numpy() *
255).astype(
np.uint8))
elif isinstance(image, np.ndarray):
image_srgb = image_srgb.cpu().numpy()
else:
image_srgb = image_srgb.to(image.device)
return image_srgb
def _render(
self,
glctx,
mvp,
pos,
pos_idx,
uv,
uv_idx,
tex,
resolution,
max_mip_level,
keep_alpha,
filter_mode
):
pos_clip = transform_pos(mvp, pos)
if isinstance(resolution, (int, float)):
resolution = [resolution, resolution]
rast_out, rast_out_db = self.raster_rasterize(
glctx, pos_clip, pos_idx, resolution=resolution)
tex = tex.contiguous()
if filter_mode == 'linear-mipmap-linear':
texc, texd = self.raster_interpolate(
uv[None, ...], rast_out, uv_idx, rast_db=rast_out_db, diff_attrs='all')
color = self.raster_texture(
tex[None, ...], texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level)
else:
texc, _ = self.raster_interpolate(uv[None, ...], rast_out, uv_idx)
color = self.raster_texture(tex[None, ...], texc, filter_mode=filter_mode)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
color = color * visible_mask # Mask out background.
if self.use_antialias:
color = self.raster_antialias(color, rast_out, pos_clip, pos_idx)
if keep_alpha:
color = torch.cat([color, visible_mask], dim=-1)
return color[0, ...]
def render(
self,
elev,
azim,
camera_distance=None,
center=None,
resolution=None,
tex=None,
keep_alpha=True,
bgcolor=None,
filter_mode=None,
return_type='th'
):
proj = self.camera_proj_mat
r_mv = get_mv_matrix(
elev=elev,
azim=azim,
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
center=center)
r_mvp = np.matmul(proj, r_mv).astype(np.float32)
if tex is not None:
if isinstance(tex, Image.Image):
tex = torch.tensor(np.array(tex) / 255.0)
elif isinstance(tex, np.ndarray):
tex = torch.tensor(tex)
if tex.dim() == 2:
tex = tex.unsqueeze(-1)
tex = tex.float().to(self.device)
image = self._render(r_mvp, self.vtx_pos, self.pos_idx, self.vtx_uv, self.uv_idx,
self.tex if tex is None else tex,
self.default_resolution if resolution is None else resolution,
self.max_mip_level, True, filter_mode if filter_mode else self.filter_mode)
mask = (image[..., [-1]] == 1).float()
if bgcolor is None:
bgcolor = [0 for _ in range(image.shape[-1] - 1)]
image = image * mask + (1 - mask) * \
torch.tensor(bgcolor + [0]).to(self.device)
if keep_alpha == False:
image = image[..., :-1]
if return_type == 'np':
image = image.cpu().numpy()
elif return_type == 'pl':
image = image.squeeze(-1).cpu().numpy() * 255
image = Image.fromarray(image.astype(np.uint8))
return image
def render_normal(
self,
elev,
azim,
camera_distance=None,
center=None,
resolution=None,
bg_color=[1, 1, 1],
use_abs_coor=False,
normalize_rgb=True,
return_type='th'
):
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center)
if resolution is None:
resolution = self.default_resolution
if isinstance(resolution, (int, float)):
resolution = [resolution, resolution]
rast_out, rast_out_db = self.raster_rasterize(
pos_clip, self.pos_idx, resolution=resolution)
if use_abs_coor:
mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :]
else:
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
mesh_triangles = pos_camera[self.pos_idx[:, :3], :]
face_normals = F.normalize(
torch.cross(mesh_triangles[:,
1,
:] - mesh_triangles[:,
0,
:],
mesh_triangles[:,
2,
:] - mesh_triangles[:,
0,
:],
dim=-1),
dim=-1)
vertex_normals = trimesh.geometry.mean_vertex_normals(vertex_count=self.vtx_pos.shape[0],
faces=self.pos_idx.cpu(),
face_normals=face_normals.cpu(), )
vertex_normals = torch.from_numpy(
vertex_normals).float().to(self.device).contiguous()
# Interpolate normal values across the rasterized pixels
normal, _ = self.raster_interpolate(
vertex_normals[None, ...], rast_out, self.pos_idx)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
normal = normal * visible_mask + \
torch.tensor(bg_color, dtype=torch.float32, device=self.device) * (1 -
visible_mask) # Mask out background.
if normalize_rgb:
normal = (normal + 1) * 0.5
if self.use_antialias:
normal = self.raster_antialias(normal, rast_out, pos_clip, self.pos_idx)
image = normal[0, ...]
if return_type == 'np':
image = image.cpu().numpy()
elif return_type == 'pl':
image = image.cpu().numpy() * 255
image = Image.fromarray(image.astype(np.uint8))
return image
def convert_normal_map(self, image):
# blue is front, red is left, green is top
if isinstance(image, Image.Image):
image = np.array(image)
mask = (image == [255, 255, 255]).all(axis=-1)
image = (image / 255.0) * 2.0 - 1.0
image[..., [1]] = -image[..., [1]]
image[..., [1, 2]] = image[..., [2, 1]]
image[..., [0]] = -image[..., [0]]
image = (image + 1.0) * 0.5
image = (image * 255).astype(np.uint8)
image[mask] = [127, 127, 255]
return Image.fromarray(image)
def get_pos_from_mvp(self, elev, azim, camera_distance, center):
proj = self.camera_proj_mat
r_mv = get_mv_matrix(
elev=elev,
azim=azim,
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
center=center)
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
pos_clip = transform_pos(proj, pos_camera)
return pos_camera, pos_clip
def render_depth(
self,
elev,
azim,
camera_distance=None,
center=None,
resolution=None,
return_type='th'
):
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center)
if resolution is None:
resolution = self.default_resolution
if isinstance(resolution, (int, float)):
resolution = [resolution, resolution]
rast_out, rast_out_db = self.raster_rasterize(
pos_clip, self.pos_idx, resolution=resolution)
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
# Interpolate depth values across the rasterized pixels
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
depth_max, depth_min = depth[visible_mask >
0].max(), depth[visible_mask > 0].min()
depth = (depth - depth_min) / (depth_max - depth_min)
depth = depth * visible_mask # Mask out background.
if self.use_antialias:
depth = self.raster_antialias(depth, rast_out, pos_clip, self.pos_idx)
image = depth[0, ...]
if return_type == 'np':
image = image.cpu().numpy()
elif return_type == 'pl':
image = image.squeeze(-1).cpu().numpy() * 255
image = Image.fromarray(image.astype(np.uint8))
return image
def render_position(self, elev, azim, camera_distance=None, center=None,
resolution=None, bg_color=[1, 1, 1], return_type='th'):
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center)
if resolution is None:
resolution = self.default_resolution
if isinstance(resolution, (int, float)):
resolution = [resolution, resolution]
rast_out, rast_out_db = self.raster_rasterize(
pos_clip, self.pos_idx, resolution=resolution)
tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor
tex_position = tex_position.contiguous()
# Interpolate depth values across the rasterized pixels
position, _ = self.raster_interpolate(
tex_position[None, ...], rast_out, self.pos_idx)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
position = position * visible_mask + \
torch.tensor(bg_color, dtype=torch.float32, device=self.device) * (1 -
visible_mask) # Mask out background.
if self.use_antialias:
position = self.raster_antialias(position, rast_out, pos_clip, self.pos_idx)
image = position[0, ...]
if return_type == 'np':
image = image.cpu().numpy()
elif return_type == 'pl':
image = image.squeeze(-1).cpu().numpy() * 255
image = Image.fromarray(image.astype(np.uint8))
return image
def render_uvpos(self, return_type='th'):
image = self.uv_feature_map(self.vtx_pos * 0.5 + 0.5)
if return_type == 'np':
image = image.cpu().numpy()
elif return_type == 'pl':
image = image.cpu().numpy() * 255
image = Image.fromarray(image.astype(np.uint8))
return image
def uv_feature_map(self, vert_feat, bg=None):
vtx_uv = self.vtx_uv * 2 - 1.0
vtx_uv = torch.cat(
[vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0)
vtx_uv[..., -1] = 1
uv_idx = self.uv_idx
rast_out, rast_out_db = self.raster_rasterize(
vtx_uv, uv_idx, resolution=self.texture_size)
feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx)
feat_map = feat_map[0, ...]
if bg is not None:
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
feat_map[visible_mask == 0] = bg
return feat_map
def render_sketch_from_geometry(self, normal_image, depth_image):
normal_image_np = normal_image.cpu().numpy()
depth_image_np = depth_image.cpu().numpy()
normal_image_np = (normal_image_np * 255).astype(np.uint8)
depth_image_np = (depth_image_np * 255).astype(np.uint8)
normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY)
normal_edges = cv2.Canny(normal_image_np, 80, 150)
depth_edges = cv2.Canny(depth_image_np, 30, 80)
combined_edges = np.maximum(normal_edges, depth_edges)
sketch_image = torch.from_numpy(combined_edges).to(
normal_image.device).float() / 255.0
sketch_image = sketch_image.unsqueeze(-1)
return sketch_image
def render_sketch_from_depth(self, depth_image):
depth_image_np = depth_image.cpu().numpy()
depth_image_np = (depth_image_np * 255).astype(np.uint8)
depth_edges = cv2.Canny(depth_image_np, 30, 80)
combined_edges = depth_edges
sketch_image = torch.from_numpy(combined_edges).to(
depth_image.device).float() / 255.0
sketch_image = sketch_image.unsqueeze(-1)
return sketch_image
def back_project(self, image, elev, azim,
camera_distance=None, center=None, method=None):
if isinstance(image, Image.Image):
image = torch.tensor(np.array(image) / 255.0)
elif isinstance(image, np.ndarray):
image = torch.tensor(image)
if image.dim() == 2:
image = image.unsqueeze(-1)
image = image.float().to(self.device)
resolution = image.shape[:2]
channel = image.shape[-1]
texture = torch.zeros(self.texture_size + (channel,)).to(self.device)
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device)
proj = self.camera_proj_mat
r_mv = get_mv_matrix(
elev=elev,
azim=azim,
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
center=center)
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
pos_clip = transform_pos(proj, pos_camera)
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
v0 = pos_camera[self.pos_idx[:, 0], :]
v1 = pos_camera[self.pos_idx[:, 1], :]
v2 = pos_camera[self.pos_idx[:, 2], :]
face_normals = F.normalize(
torch.cross(
v1 - v0,
v2 - v0,
dim=-1),
dim=-1)
vertex_normals = trimesh.geometry.mean_vertex_normals(vertex_count=self.vtx_pos.shape[0],
faces=self.pos_idx.cpu(),
face_normals=face_normals.cpu(), )
vertex_normals = torch.from_numpy(
vertex_normals).float().to(self.device).contiguous()
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
rast_out, rast_out_db = self.raster_rasterize(
pos_clip, self.pos_idx, resolution=resolution)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
normal, _ = self.raster_interpolate(
vertex_normals[None, ...], rast_out, self.pos_idx)
normal = normal[0, ...]
uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx)
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
depth = depth[0, ...]
depth_max, depth_min = depth[visible_mask >
0].max(), depth[visible_mask > 0].min()
depth_normalized = (depth - depth_min) / (depth_max - depth_min)
depth_image = depth_normalized * visible_mask # Mask out background.
sketch_image = self.render_sketch_from_depth(depth_image)
lookat = torch.tensor([[0, 0, -1]], device=self.device)
cos_image = torch.nn.functional.cosine_similarity(
lookat, normal.view(-1, 3))
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1)
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi)
cos_image[cos_image < cos_thres] = 0
# shrink
kernel_size = self.bake_unreliable_kernel_size * 2 + 1
kernel = torch.ones(
(1, 1, kernel_size, kernel_size), dtype=torch.float32).to(
sketch_image.device)
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float()
visible_mask = F.conv2d(
1.0 - visible_mask,
kernel,
padding=kernel_size // 2)
visible_mask = 1.0 - (visible_mask > 0).float() # 二值化
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0)
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2)
sketch_image = (sketch_image > 0).float() # 二值化
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
visible_mask = visible_mask * (sketch_image < 0.5)
cos_image[visible_mask == 0] = 0
method = self.bake_mode if method is None else method
if method == 'linear':
proj_mask = (visible_mask != 0).view(-1)
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask]
texture = linear_grid_put_2d(
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image)
cos_map = linear_grid_put_2d(
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image)
boundary_map = linear_grid_put_2d(
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image)
else:
raise f'No bake mode {method}'
return texture, cos_map, boundary_map
def bake_texture(self, colors, elevs, azims,
camera_distance=None, center=None, exp=6, weights=None):
for i in range(len(colors)):
if isinstance(colors[i], Image.Image):
colors[i] = torch.tensor(
np.array(
colors[i]) / 255.0,
device=self.device).float()
if weights is None:
weights = [1.0 for _ in range(colors)]
textures = []
cos_maps = []
for color, elev, azim, weight in zip(colors, elevs, azims, weights):
texture, cos_map, _ = self.back_project(
color, elev, azim, camera_distance, center)
cos_map = weight * (cos_map ** exp)
textures.append(texture)
cos_maps.append(cos_map)
texture_merge, trust_map_merge = self.fast_bake_texture(
textures, cos_maps)
return texture_merge, trust_map_merge
@torch.no_grad()
def fast_bake_texture(self, textures, cos_maps):
channel = textures[0].shape[-1]
texture_merge = torch.zeros(
self.texture_size + (channel,)).to(self.device)
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device)
for texture, cos_map in zip(textures, cos_maps):
view_sum = (cos_map > 0).sum()
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
if painted_sum / view_sum > 0.99:
continue
texture_merge += texture * cos_map
trust_map_merge += cos_map
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1E-8)
return texture_merge, trust_map_merge > 1E-8
def uv_inpaint(self, texture, mask):
if isinstance(texture, torch.Tensor):
texture_np = texture.cpu().numpy()
elif isinstance(texture, np.ndarray):
texture_np = texture
elif isinstance(texture, Image.Image):
texture_np = np.array(texture) / 255.0
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh()
texture_np, mask = meshVerticeInpaint(
texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx)
texture_np = cv2.inpaint(
(texture_np *
255).astype(
np.uint8),
255 -
mask,
3,
cv2.INPAINT_NS)
return texture_np
|