AuraFlow / app.py
multimodalart's picture
Update app.py
3537b64 verified
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import AuraFlowPipeline
import torch
from gradio_imageslider import ImageSlider
device = "cuda" if torch.cuda.is_available() else "cpu"
#torch.set_float32_matmul_precision("high")
#torch._inductor.config.conv_1x1_as_mm = True
#torch._inductor.config.coordinate_descent_tuning = True
#torch._inductor.config.epilogue_fusion = False
#torch._inductor.config.coordinate_descent_check_all_directions = True
#pipe_v1 = AuraFlowPipeline.from_pretrained(
# "fal/AuraFlow",
# torch_dtype=torch.float16
#).to("cuda")
pipe_v2 = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.2",
torch_dtype=torch.float16
).to("cuda")
pipe = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3",
torch_dtype=torch.float16
).to("cuda")
#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.vae.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU()
def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)):
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = width,
height = height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
return image, seed
@spaces.GPU(duration=95)
def infer(prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=28,
model_version="0.3",
comparison_mode=False,
progress=gr.Progress(track_tqdm=True)
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if(comparison_mode):
image_1 = pipe_v2(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
generator = torch.Generator().manual_seed(seed)
image_2 = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed
if(model_version == "0.1"):
image = pipe_v1(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
elif(model_version == "0.2"):
image = pipe_v2(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
else:
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
return gr.update(visible=True, value=image), gr.update(visible=False), seed
examples = [
"A photo of a lavender cat",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# AuraFlow 0.3
Demo of the [AuraFlow 0.3](https://huggingface.co/fal/AuraFlow-v0.3) 6.8B parameters open source diffusion transformer model
[[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
result_compare = ImageSlider(visible=False, label="Left 0.2, Right 0.3")
comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False)
with gr.Accordion("Advanced Settings", open=False):
model_version = gr.Dropdown(
["0.2", "0.3"], label="Model version", value="0.3"
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer_example,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_version, comparison_mode],
outputs = [result, result_compare, seed]
)
demo.queue().launch()