import gradio as gr import numpy as np import random import spaces from diffusers import AuraFlowPipeline import torch from gradio_imageslider import ImageSlider device = "cuda" if torch.cuda.is_available() else "cpu" #torch.set_float32_matmul_precision("high") #torch._inductor.config.conv_1x1_as_mm = True #torch._inductor.config.coordinate_descent_tuning = True #torch._inductor.config.epilogue_fusion = False #torch._inductor.config.coordinate_descent_check_all_directions = True #pipe_v1 = AuraFlowPipeline.from_pretrained( # "fal/AuraFlow", # torch_dtype=torch.float16 #).to("cuda") pipe_v2 = AuraFlowPipeline.from_pretrained( "fal/AuraFlow-v0.2", torch_dtype=torch.float16 ).to("cuda") pipe = AuraFlowPipeline.from_pretrained( "fal/AuraFlow-v0.3", torch_dtype=torch.float16 ).to("cuda") #pipe.transformer.to(memory_format=torch.channels_last) #pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) #pipe.transformer.to(memory_format=torch.channels_last) #pipe.vae.to(memory_format=torch.channels_last) #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) #pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU() def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)): generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, width = width, height = height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator ).images[0] return image, seed @spaces.GPU(duration=95) def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.3", comparison_mode=False, progress=gr.Progress(track_tqdm=True) ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if(comparison_mode): image_1 = pipe_v2( prompt = prompt, negative_prompt = negative_prompt, width=width, height=height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator ).images[0] generator = torch.Generator().manual_seed(seed) image_2 = pipe( prompt = prompt, negative_prompt = negative_prompt, width=width, height=height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator ).images[0] return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed if(model_version == "0.1"): image = pipe_v1( prompt = prompt, negative_prompt = negative_prompt, width=width, height=height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator ).images[0] elif(model_version == "0.2"): image = pipe_v2( prompt = prompt, negative_prompt = negative_prompt, width=width, height=height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator ).images[0] else: image = pipe( prompt = prompt, negative_prompt = negative_prompt, width=width, height=height, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, generator = generator ).images[0] return gr.update(visible=True, value=image), gr.update(visible=False), seed examples = [ "A photo of a lavender cat", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # AuraFlow 0.3 Demo of the [AuraFlow 0.3](https://huggingface.co/fal/AuraFlow-v0.3) 6.8B parameters open source diffusion transformer model [[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) result_compare = ImageSlider(visible=False, label="Left 0.2, Right 0.3") comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False) with gr.Accordion("Advanced Settings", open=False): model_version = gr.Dropdown( ["0.2", "0.3"], label="Model version", value="0.3" ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer_example, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_version, comparison_mode], outputs = [result, result_compare, seed] ) demo.queue().launch()