from diffusers import StableDiffusionXLPipeline, AutoencoderKL import random import torch import numpy as np import spaces vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, vae=vae, ).to("cuda") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) MAX_SEED = np.iinfo(np.int32).max @spaces.GPU def run(prompt="a photo of an astronaut riding a horse on mars", steps=10, seed=20, negative_prompt="", randomize_seed=False): if randomize_seed: seed = random.randint(0, MAX_SEED) sampling_schedule = [999, 845, 730, 587, 443, 310, 193, 116, 53, 13, 0] torch.manual_seed(seed) ays_images = pipe( prompt, negative_prompt=negative_prompt, num_images_per_prompt=1, timesteps=sampling_schedule, ).images return ays_images[0], seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Align-your-steps Unnoficial demo for the official diffusers implementation of [Align your Steps](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/) by NVIDIA """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=4, maximum=12, step=1, value=8, ) run_button.click( fn = infer, inputs = [prompt, num_inference_steps, seed, negative_prompt, randomize_seed], outputs = [result] )