Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -20,13 +20,17 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
@spaces.GPU(duration=75) #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
|
28 |
generator = torch.Generator().manual_seed(seed)
|
|
|
29 |
|
|
|
|
|
|
|
30 |
image = pipe(
|
31 |
prompt = prompt,
|
32 |
negative_prompt = negative_prompt,
|
@@ -96,7 +100,7 @@ with gr.Blocks(css=css) as demo:
|
|
96 |
|
97 |
with gr.Accordion("Advanced Settings", open=False):
|
98 |
|
99 |
-
|
100 |
|
101 |
seed = gr.Slider(
|
102 |
label="Seed",
|
@@ -145,7 +149,7 @@ with gr.Blocks(css=css) as demo:
|
|
145 |
gr.on(
|
146 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
147 |
fn = infer,
|
148 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps],
|
149 |
outputs = [result, seed]
|
150 |
)
|
151 |
|
|
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
@spaces.GPU(duration=75) #[uncomment to use ZeroGPU]
|
23 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
+
pipe.unload_lora_weights()
|
30 |
|
31 |
+
if lora_model is not None:
|
32 |
+
pipe.load_lora_weights(lora_model)
|
33 |
+
|
34 |
image = pipe(
|
35 |
prompt = prompt,
|
36 |
negative_prompt = negative_prompt,
|
|
|
100 |
|
101 |
with gr.Accordion("Advanced Settings", open=False):
|
102 |
|
103 |
+
lora_model = gr.Textbox(label="LoRA model id", placeholder="multimodalart/flux-tarot-v1 ")
|
104 |
|
105 |
seed = gr.Slider(
|
106 |
label="Seed",
|
|
|
149 |
gr.on(
|
150 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
151 |
fn = infer,
|
152 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, true_guidance, num_inference_steps, lora_model],
|
153 |
outputs = [result, seed]
|
154 |
)
|
155 |
|