Spaces:
Runtime error
Runtime error
Commit
·
301a986
0
Parent(s):
Duplicate from samarthagarwal23/QuestionAnswering_on_annual_reports
Browse filesCo-authored-by: Samarth <[email protected]>
- .gitattributes +28 -0
- NASDAQ_AAPL_2020.pdf +0 -0
- NASDAQ_MSFT_2020.pdf +0 -0
- README.md +46 -0
- app.py +123 -0
- dbs-annual-report-2020.pdf +3 -0
.gitattributes
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
dbs-annual-report-2020.pdf filter=lfs diff=lfs merge=lfs -text
|
NASDAQ_AAPL_2020.pdf
ADDED
The diff for this file is too large to render.
See raw diff
|
|
NASDAQ_MSFT_2020.pdf
ADDED
Binary file (861 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: QuestionAnswering_on_annual_reports
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
duplicated_from: samarthagarwal23/QuestionAnswering_on_annual_reports
|
10 |
+
---
|
11 |
+
|
12 |
+
# Configuration
|
13 |
+
|
14 |
+
`title`: _string_
|
15 |
+
Display title for the Space
|
16 |
+
|
17 |
+
`emoji`: _string_
|
18 |
+
Space emoji (emoji-only character allowed)
|
19 |
+
|
20 |
+
`colorFrom`: _string_
|
21 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
22 |
+
|
23 |
+
`colorTo`: _string_
|
24 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
25 |
+
|
26 |
+
`sdk`: _string_
|
27 |
+
Can be either `gradio`, `streamlit`, or `static`
|
28 |
+
|
29 |
+
`sdk_version` : _string_
|
30 |
+
Only applicable for `streamlit` SDK.
|
31 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
32 |
+
|
33 |
+
`app_file`: _string_
|
34 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
|
35 |
+
Path is relative to the root of the repository.
|
36 |
+
|
37 |
+
`models`: _List[string]_
|
38 |
+
HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space.
|
39 |
+
Will be parsed automatically from your code if not specified here.
|
40 |
+
|
41 |
+
`datasets`: _List[string]_
|
42 |
+
HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space.
|
43 |
+
Will be parsed automatically from your code if not specified here.
|
44 |
+
|
45 |
+
`pinned`: _boolean_
|
46 |
+
Whether the Space stays on top of your list.
|
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
os.system("pip install pdfminer.six rank_bm25 torch transformers")
|
5 |
+
|
6 |
+
from gradio.mix import Series
|
7 |
+
#import re
|
8 |
+
from rank_bm25 import BM25Okapi
|
9 |
+
import string
|
10 |
+
import torch
|
11 |
+
from transformers import pipeline
|
12 |
+
import pdfminer
|
13 |
+
from pdfminer.high_level import extract_text
|
14 |
+
|
15 |
+
len_doc = 500
|
16 |
+
overlap = 15
|
17 |
+
param_top_k_retriver = 15
|
18 |
+
param_top_k_ranker = 3
|
19 |
+
|
20 |
+
def read_pdf(file):
|
21 |
+
text = extract_text(file.name)
|
22 |
+
# Split text into smaller docs
|
23 |
+
docs = []
|
24 |
+
|
25 |
+
i = 0
|
26 |
+
while i < len(text):
|
27 |
+
docs.append(text[i:i+len_doc])
|
28 |
+
i = i + len_doc - overlap
|
29 |
+
return docs
|
30 |
+
|
31 |
+
# We use BM25 as retriver which will do 1st round of candidate filtering based on word based matching
|
32 |
+
|
33 |
+
def bm25_tokenizer(text):
|
34 |
+
stop_w = ['a', 'the', 'am', 'is' , 'are', 'who', 'how', 'where', 'when', 'why', 'what']
|
35 |
+
tokenized_doc = []
|
36 |
+
for token in text.lower().split():
|
37 |
+
token = token.strip(string.punctuation)
|
38 |
+
|
39 |
+
if len(token) > 0 and token not in stop_w:
|
40 |
+
tokenized_doc.append(token)
|
41 |
+
return tokenized_doc
|
42 |
+
|
43 |
+
def retrieval(query, top_k_retriver, docs, bm25_):
|
44 |
+
|
45 |
+
bm25_scores = bm25_.get_scores(bm25_tokenizer(query))
|
46 |
+
top_n = np.argsort(bm25_scores)[::-1][:top_k_retriver]
|
47 |
+
bm25_hits = [{'corpus_id': idx,
|
48 |
+
'score': bm25_scores[idx],
|
49 |
+
'docs':docs[idx]} for idx in top_n if bm25_scores[idx] > 0]
|
50 |
+
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
51 |
+
|
52 |
+
return bm25_hits
|
53 |
+
|
54 |
+
def qa_ranker(query, docs_, top_k_ranker, qa_model):
|
55 |
+
ans = []
|
56 |
+
for doc in docs_:
|
57 |
+
answer = qa_model(question = query,
|
58 |
+
context = doc)
|
59 |
+
answer['doc'] = doc
|
60 |
+
ans.append(answer)
|
61 |
+
return sorted(ans, key=lambda x: x['score'], reverse=True)[:top_k_ranker]
|
62 |
+
|
63 |
+
def cstr(s, color='black'):
|
64 |
+
return "<text style=color:{}>{}</text>".format(color, s)
|
65 |
+
def cstr_bold(s, color='black'):
|
66 |
+
return "<text style=color:{}><b>{}</b></text>".format(color, s)
|
67 |
+
def cstr_break(s, color='black'):
|
68 |
+
return "<text style=color:{}><br>{}</text>".format(color, s)
|
69 |
+
|
70 |
+
def print_colored(text, start_idx, end_idx, confidence):
|
71 |
+
conf_str = '- Confidence: ' + confidence
|
72 |
+
a = cstr(' '.join([text[:start_idx], \
|
73 |
+
cstr_bold(text[start_idx:end_idx], color='blue'), \
|
74 |
+
text[end_idx:], \
|
75 |
+
cstr_break(conf_str, color='grey')]), color='black')
|
76 |
+
return a
|
77 |
+
|
78 |
+
def final_qa_pipeline(file, query, model_nm):
|
79 |
+
docs = read_pdf(file)
|
80 |
+
tokenized_corpus = []
|
81 |
+
for doc in docs:
|
82 |
+
tokenized_corpus.append(bm25_tokenizer(doc))
|
83 |
+
|
84 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
85 |
+
|
86 |
+
top_k_retriver, top_k_ranker = param_top_k_retriver, param_top_k_ranker
|
87 |
+
lvl1 = retrieval(query, top_k_retriver, docs, bm25)
|
88 |
+
|
89 |
+
qa_model = pipeline("question-answering",
|
90 |
+
#model = "deepset/minilm-uncased-squad2")
|
91 |
+
model = "deepset/"+ str(model_nm))
|
92 |
+
|
93 |
+
if len(lvl1) > 0:
|
94 |
+
fnl_rank = qa_ranker(query, [l["docs"] for l in lvl1], top_k_ranker,qa_model)
|
95 |
+
top1 = print_colored(fnl_rank[0]['doc'], fnl_rank[0]['start'], fnl_rank[0]['end'], str(np.round(100*fnl_rank[0]["score"],1))+"%")
|
96 |
+
if len(lvl1)>1:
|
97 |
+
top2 = print_colored(fnl_rank[1]['doc'], fnl_rank[1]['start'], fnl_rank[1]['end'], str(np.round(100*fnl_rank[1]["score"],1))+"%")
|
98 |
+
else:
|
99 |
+
top2 = "None"
|
100 |
+
return (top1, top2)
|
101 |
+
else:
|
102 |
+
return ("No match","No match")
|
103 |
+
|
104 |
+
examples = [
|
105 |
+
[os.path.abspath("dbs-annual-report-2020.pdf"), "how many times has DBS won Best bank in the world ?","minilm-uncased-squad2"],
|
106 |
+
[os.path.abspath("dbs-annual-report-2020.pdf"), "how much dividend was paid to shareholders ?","minilm-uncased-squad2"],
|
107 |
+
[os.path.abspath("dbs-annual-report-2020.pdf"), "what is the sustainability focus ?","minilm-uncased-squad2"],
|
108 |
+
[os.path.abspath("NASDAQ_AAPL_2020.pdf"), "how much are the outstanding shares ?","minilm-uncased-squad2"],
|
109 |
+
[os.path.abspath("NASDAQ_AAPL_2020.pdf"), "what is competitors strategy ?","minilm-uncased-squad2"],
|
110 |
+
[os.path.abspath("NASDAQ_AAPL_2020.pdf"), "who is the chief executive officer ?","minilm-uncased-squad2"],
|
111 |
+
[os.path.abspath("NASDAQ_MSFT_2020.pdf"), "How much is the guided revenue for next quarter?","minilm-uncased-squad2"],
|
112 |
+
]
|
113 |
+
|
114 |
+
iface = gr.Interface(
|
115 |
+
fn = final_qa_pipeline,
|
116 |
+
inputs = [gr.inputs.File(label="input pdf file"), gr.inputs.Textbox(label="Question:"), gr.inputs.Dropdown(choices=["minilm-uncased-squad2","roberta-base-squad2"],label="Model")],
|
117 |
+
outputs = [gr.outputs.HTML(label="Top 1 answer"), gr.outputs.HTML(label="Top 2 answer")],
|
118 |
+
examples=examples,
|
119 |
+
theme = "grass",
|
120 |
+
title = "Question Answering on annual reports",
|
121 |
+
description = "Navigate long annual reports by using Machine learning to answer your questions. \nSimply upload any annual report pdf you are interested in and ask model a question OR load an example from below."
|
122 |
+
)
|
123 |
+
iface.launch(enable_queue = True)
|
dbs-annual-report-2020.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95056380018cf9eb93911ce026783ed99531881271c59a0bbb239fe6354854ee
|
3 |
+
size 11581751
|