Spaces:
Sleeping
Sleeping
namanviber
commited on
Upload 3 files
Browse files- app.py +180 -0
- requirements.txt +4 -0
- rf.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import pickle
|
5 |
+
|
6 |
+
Operating_Airline= ["American Airlines", "Delta Air Lines", "American Eagle Airlines", "United Airlines", "Southwest Airlines"]
|
7 |
+
Origin = ["Hartsfield-Jackson Atlanta International Airport", "Charlotte Douglas International Airport", "Denver International Airport", "Dallas/Fort Worth International Airport", "George Bush Intercontinental Airport", "Los Angeles International Airport", "Chicago O'Hare International Airport", "Phoenix Sky Harbor International Airport", "San Francisco International Airport"]
|
8 |
+
Dest = ["Hartsfield-Jackson Atlanta International Airport", "Charlotte Douglas International Airport", "Denver International Airport", "Dallas/Fort Worth International Airport", "George Bush Intercontinental Airport", "Los Angeles International Airport", "Chicago O'Hare International Airport", "Phoenix Sky Harbor International Airport", "San Francisco International Airport"]
|
9 |
+
|
10 |
+
airports = {
|
11 |
+
"Hartsfield-Jackson Atlanta International Airport": "ATL",
|
12 |
+
"Charlotte Douglas International Airport": "CLT",
|
13 |
+
"Denver International Airport": "DEN",
|
14 |
+
"Dallas/Fort Worth International Airport": "DFW",
|
15 |
+
"George Bush Intercontinental Airport": "IAH",
|
16 |
+
"Los Angeles International Airport": "LAX",
|
17 |
+
"Chicago O'Hare International Airport": "ORD",
|
18 |
+
"Phoenix Sky Harbor International Airport": "PHX",
|
19 |
+
"San Francisco International Airport": "SFO"
|
20 |
+
}
|
21 |
+
|
22 |
+
airlines = {
|
23 |
+
"American Airlines": "AA",
|
24 |
+
"Delta Air Lines": "DL",
|
25 |
+
"American Eagle Airlines": "OO",
|
26 |
+
"United Airlines": "UA",
|
27 |
+
"Southwest Airlines": "WN"
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
data_pivot = {
|
32 |
+
'origin': ['ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'CLT', 'CLT', 'CLT', 'CLT', 'CLT', 'CLT', 'CLT', 'DEN', 'DEN', 'DEN', 'DEN', 'DEN', 'DEN', 'DEN', 'DFW', 'DFW', 'DFW', 'DFW', 'DFW', 'DFW', 'IAH', 'IAH', 'IAH', 'IAH', 'IAH', 'IAH', 'LAX', 'LAX', 'LAX', 'LAX', 'LAX', 'LAX', 'LAX', 'ORD', 'ORD', 'ORD', 'ORD', 'ORD', 'ORD', 'ORD', 'PHX', 'PHX', 'PHX', 'PHX', 'PHX', 'PHX', 'PHX', 'SFO', 'SFO', 'SFO', 'SFO', 'SFO', 'SFO', 'SFO'],
|
33 |
+
'dest': ['CLT', 'DEN', 'DFW', 'IAH', 'LAX', 'ORD', 'PHX', 'ATL', 'DEN', 'DFW', 'IAH', 'LAX', 'ORD', 'PHX', 'ATL', 'CLT', 'DFW', 'IAH', 'LAX', 'ORD', 'PHX', 'ATL', 'CLT', 'DEN', 'IAH', 'LAX', 'ORD', 'ATL', 'CLT', 'DEN', 'DFW', 'LAX', 'ORD', 'ATL', 'CLT', 'DEN', 'DFW', 'IAH', 'ORD', 'PHX', 'ATL', 'CLT', 'DEN', 'DFW', 'IAH', 'LAX', 'PHX', 'ATL', 'CLT', 'DEN', 'DFW', 'IAH', 'LAX', 'SFO', 'ATL', 'CLT', 'DEN', 'DFW', 'IAH', 'LAX', 'ORD'],
|
34 |
+
'distance': [226.0, 1199.0, 731.0, 689.0, 1947.0, 606.0, 1587.0, 226.0, 1337.0, 936.0, 912.0, 2125.0, 599.0, 1773.0, 1199.0, 1337.0, 641.0, 862.0, 862.0, 888.0, 602.0, 731.0, 936.0, 641.0, 224.0, 1235.0, 801.0, 689.0, 912.0, 862.0, 224.0, 1379.0, 925.0, 1947.0, 2125.0, 862.0, 1235.0, 1379.0, 1744.0, 370.0, 606.0, 599.0, 888.0, 802.0, 925.0, 1744.0, 1440.0, 1587.0, 1773.0, 602.0, 868.0, 1009.0, 370.0, 651.0, 2139.0, 2296.0, 967.0, 1464.0, 1635.0, 337.0, 1846.0]
|
35 |
+
}
|
36 |
+
|
37 |
+
df_pivot = pd.DataFrame(data_pivot)
|
38 |
+
pivot_table = pd.pivot_table(df_pivot, values='distance', index=['origin'], columns=['dest'], fill_value=0)
|
39 |
+
|
40 |
+
filename = "rf.pkl"
|
41 |
+
|
42 |
+
with open(filename, "rb") as pickle_file:
|
43 |
+
model = pickle.load(pickle_file)
|
44 |
+
|
45 |
+
airport_codes = {
|
46 |
+
'LAX': 'USW00023174',
|
47 |
+
'IAH': 'USW00012960',
|
48 |
+
'DEN': 'USW00003017',
|
49 |
+
'ORD': 'USW00094846',
|
50 |
+
'ATL': 'USW00013874',
|
51 |
+
'SFO': 'USW00023234',
|
52 |
+
'DFW': 'USW00003927',
|
53 |
+
'PHX': 'USW00023183',
|
54 |
+
'CLT': 'USW00013881'
|
55 |
+
}
|
56 |
+
|
57 |
+
def processResponse(a):
|
58 |
+
data = a.text.replace('"', ' ').splitlines()
|
59 |
+
data = [line.strip() for line in data]
|
60 |
+
|
61 |
+
header = data[0].split(',')
|
62 |
+
header = [line.strip() for line in header]
|
63 |
+
|
64 |
+
rows = [row.split(',') for row in data[1:] if row]
|
65 |
+
rows[0] = [line.strip() for line in rows[0]]
|
66 |
+
rows[1] = [line.strip() for line in rows[1]]
|
67 |
+
|
68 |
+
df = pd.DataFrame(rows, columns=header)
|
69 |
+
|
70 |
+
columns_to_convert = ['AWND', 'PRCP', 'SNOW', 'TAVG']
|
71 |
+
df[columns_to_convert] = df[columns_to_convert].apply(pd.to_numeric, errors='coerce')
|
72 |
+
df.fillna(0,inplace=True)
|
73 |
+
|
74 |
+
|
75 |
+
return df
|
76 |
+
|
77 |
+
def weather_info(origin,dest,date):
|
78 |
+
|
79 |
+
url = 'https://www.ncei.noaa.gov/access/services/data/v1'
|
80 |
+
|
81 |
+
params = {
|
82 |
+
'dataset': 'daily-summaries',
|
83 |
+
'stations': f'{origin}, {dest}',
|
84 |
+
'dataTypes': 'AWND,PRCP,SNOW,TAVG',
|
85 |
+
'startDate': f'{date}',
|
86 |
+
'endDate': f'{date}'
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
response = requests.get(url, params=params)
|
91 |
+
|
92 |
+
if response.status_code == 200:
|
93 |
+
|
94 |
+
df = processResponse(response)
|
95 |
+
awnd_o, prcp_o, tavg_o, awnd_d, prcp_d, tavg_d,snow_o, snow_d = df['AWND'][0], df['PRCP'][0], df['TAVG'][0], df['AWND'][1], df['PRCP'][1], df['TAVG'][1], df['SNOW'][0], df['SNOW'][1]
|
96 |
+
return awnd_o, prcp_o, tavg_o, awnd_d, prcp_d, tavg_d,snow_o, snow_d
|
97 |
+
|
98 |
+
return 0,0,0,0,0,0,0,0
|
99 |
+
|
100 |
+
|
101 |
+
def preprocess_input(date, operating_airline, origin, dest, dep_time, distance):
|
102 |
+
quarter = (date.month - 1) // 3 + 1
|
103 |
+
month = date.month
|
104 |
+
day_of_month = date.day
|
105 |
+
day_of_week = date.weekday() + 1
|
106 |
+
|
107 |
+
processed_time = dep_time.hour * 100 + dep_time.minute
|
108 |
+
dep_hour_of_day = int(processed_time) // 100
|
109 |
+
|
110 |
+
awnd_o, prcp_o, tavg_o, awnd_d, prcp_d, tavg_d,snow_o, snow_d = weather_info(airport_codes[origin],airport_codes[dest],date)
|
111 |
+
|
112 |
+
format = {
|
113 |
+
"Distance": False, "DepHourofDay": False, "AWND_O": False, "PRCP_O": False, "TAVG_O": False, "AWND_D": False,
|
114 |
+
"PRCP_D": False, "TAVG_D": False, "SNOW_O": False, "SNOW_D": False, "Quarter_1": False, "Quarter_2": False,
|
115 |
+
"Quarter_3": False, "Quarter_4": False, "Month_1": False, "Month_2": False, "Month_3": False, "Month_4": False,
|
116 |
+
"Month_5": False, "Month_6": False, "Month_7": False, "Month_8": False, "Month_9": False, "Month_10": False,
|
117 |
+
"Month_11": False, "Month_12": False, "DayofMonth_1": False, "DayofMonth_2": False, "DayofMonth_3": False,
|
118 |
+
"DayofMonth_4": False, "DayofMonth_5": False, "DayofMonth_6": False, "DayofMonth_7": False, "DayofMonth_8": False,
|
119 |
+
"DayofMonth_9": False, "DayofMonth_10": False, "DayofMonth_11": False, "DayofMonth_12": False, "DayofMonth_13": False,
|
120 |
+
"DayofMonth_14": False, "DayofMonth_15": False, "DayofMonth_16": False, "DayofMonth_17": False, "DayofMonth_18": False,
|
121 |
+
"DayofMonth_19": False, "DayofMonth_20": False, "DayofMonth_21": False, "DayofMonth_22": False, "DayofMonth_23": False,
|
122 |
+
"DayofMonth_24": False, "DayofMonth_25": False, "DayofMonth_26": False, "DayofMonth_27": False, "DayofMonth_28": False,
|
123 |
+
"DayofMonth_29": False, "DayofMonth_30": False, "DayofMonth_31": False, "DayOfWeek_1": False, "DayOfWeek_2": False,
|
124 |
+
"DayOfWeek_3": False, "DayOfWeek_4": False, "DayOfWeek_5": False, "DayOfWeek_6": False, "DayOfWeek_7": False,
|
125 |
+
"Operating_Airline _AA": False, "Operating_Airline _DL": False, "Operating_Airline _OO": False, "Operating_Airline _UA": False,
|
126 |
+
"Operating_Airline _WN": False, "Origin_ATL": False, "Origin_CLT": False, "Origin_DEN": False, "Origin_DFW": False,
|
127 |
+
"Origin_IAH": False, "Origin_LAX": False, "Origin_ORD": False, "Origin_PHX": False, "Origin_SFO": False,
|
128 |
+
"Dest_ATL": False, "Dest_CLT": False, "Dest_DEN": False, "Dest_DFW": False, "Dest_IAH": False, "Dest_LAX": False,
|
129 |
+
"Dest_ORD": False, "Dest_PHX": False, "Dest_SFO": False}
|
130 |
+
|
131 |
+
format["Distance"] = distance
|
132 |
+
format["DepHourofDay"] = dep_hour_of_day
|
133 |
+
format["AWND_O"] = awnd_o
|
134 |
+
format["PRCP_O"] = prcp_o
|
135 |
+
format["TAVG_O"] = tavg_o
|
136 |
+
format["AWND_D"] = awnd_d
|
137 |
+
format["PRCP_D"] = prcp_d
|
138 |
+
format["TAVG_D"] = tavg_d
|
139 |
+
format["SNOW_O"] = snow_o
|
140 |
+
format["SNOW_D"] = snow_d
|
141 |
+
format[f"Quarter_{quarter}"] = True
|
142 |
+
format[f"Month_{month}"] = True
|
143 |
+
format[f"DayofMonth_{day_of_month}"] = True
|
144 |
+
format[f"DayOfWeek_{day_of_week}"] = True
|
145 |
+
format[f"Operating_Airline _{operating_airline}"] = True
|
146 |
+
format[f"Origin_{origin}"] = True
|
147 |
+
format[f"Dest_{dest}"] = True
|
148 |
+
|
149 |
+
return pd.DataFrame(format, index=[0])
|
150 |
+
|
151 |
+
|
152 |
+
def predict(data):
|
153 |
+
pred = model.predict(data.iloc[:, :])
|
154 |
+
|
155 |
+
return pred[0]
|
156 |
+
|
157 |
+
# Streamlit Code
|
158 |
+
|
159 |
+
st.title("Flight Delay Prediction")
|
160 |
+
|
161 |
+
input1 = st.selectbox("Please Select Your Airline", Operating_Airline)
|
162 |
+
input2 = st.selectbox("Please Select your Origin Airport", Origin)
|
163 |
+
input3 = st.selectbox("Please Select your Destination Airport", Dest)
|
164 |
+
date = st.date_input("Please Pick Date of your Journey")
|
165 |
+
time = st.time_input("Please Select Scheduled Departure Time")
|
166 |
+
|
167 |
+
input1 = airlines[f"{input1}"]
|
168 |
+
input2 = airports[f"{input2}"]
|
169 |
+
input3 = airports[f"{input3}"]
|
170 |
+
|
171 |
+
if st.button("Predict"):
|
172 |
+
|
173 |
+
df = preprocess_input(date,input1,input2,input3,time, pivot_table[input2][input3])
|
174 |
+
|
175 |
+
prediction = predict(df)
|
176 |
+
|
177 |
+
if prediction == 1:
|
178 |
+
st.error("Your Flight is Most Likely to be delayed more than 15 minutes")
|
179 |
+
else:
|
180 |
+
st.success("Your flight is likely to be on time")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
requests
|
4 |
+
pickle
|
rf.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69cac329e7b812cef2a55184153102bade00f2c5392706e0a3f43a5c789f4e03
|
3 |
+
size 1825297252
|