File size: 7,717 Bytes
7f8e0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542dc66
7f8e0eb
 
 
 
 
 
 
 
 
542dc66
 
f33d0e2
542dc66
 
7f8e0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e120b8
7f8e0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy, string, functools, itertools, json
from underthesea import pos_tag, ner

stopwords = open('resources/stopwords_small.txt', encoding='utf-8').read().split('\n')
stopwords = set([w.replace(' ','_') for w in stopwords])
punct_set = set([c for c in string.punctuation]) | set(['β€œ','”',"...","–","…","..","β€’",'β€œ','”'])
map_pos = {'M':'noun','Y':'noun','Nb':'noun','Nc':'noun','Ni':'noun','Np':'noun','N':'noun','X':'adj',
           'Nu':'noun','Ny':'noun','V':'verb', 'Vb':'verb','Vy':'verb','A': 'adj','Ab': 'adj','R':'adj'}
map_synonym = json.load(open('resources/synonym.json', encoding='utf-8'))
with open('resources/bigram.txt', encoding='utf-8') as f:
    data = f.read().split('\n')

data = data[:-1]
markov_score = {}
for line in data:
    word, score = line.split('\t')
    # some score of words in corpus
    markov_score[word] = int(score)
del data

def makovCal(a, b):
    termBigram = a + "_" + b
    if termBigram in markov_score:
        freBigram = markov_score[termBigram]
    else:
        freBigram = 1
         
    if a in markov_score:
        freUnigram = markov_score[a]
    else:
        freUnigram = 1
        
    if freUnigram < 5:
        freUnigram = 5000 # 2000
    else: 
        freUnigram += 5000 # 2000
    return float(freBigram) / freUnigram

def generateCombinations(tokens, thresh_hold):
    combinations = []
    for i in range(0, len(tokens)):
        word = tokens[i][0].lower()
        if word in stopwords:
            combinations.append([word])
            continue
        
        pos  = tokens[i][1]
        if pos in map_pos:
            pos  = map_pos[pos]
            if word in map_synonym[pos]:
                synonyms = map_synonym[pos][word]
                possible_synonym = []
                
                for syn in synonyms:
                    if i == 0:
                        pre_word = 'NONE'
                    else:
                        pre_word = tokens[i-1][0].lower()

                    if i == len(tokens) - 1:
                        next_word = 'NONE'
                    else:
                        next_word = tokens[i+1][0].lower()

                    if makovCal(pre_word, syn) > thresh_hold or makovCal(syn, next_word) > thresh_hold:
                        possible_synonym.append(syn)
                    
                combinations.append([word] + possible_synonym)
            else:
                combinations.append([word])
        else:
            combinations.append([word])

    return combinations

def generateVariants(untokenize_text):
    words = pos_tag(untokenize_text)
    for i in range(0, len(words)):
        words[i] = (words[i][0].replace(' ','_'), words[i][1])
    
    tokens = words
    
    combinations = generateCombinations(tokens, 0.001)
    num_variants = functools.reduce(lambda x, y: x*y, [len(c) for c in combinations])
    
    base_line = 0.001
    while(num_variants > 10000):
        base_line = base_line * 2
        combinations = generateCombinations(tokens,base_line)
        num_variants = functools.reduce(lambda x, y: x*y, [len(c) for c in combinations])
     
    combinations = list(itertools.product(*combinations))
    combinations = [' '.join(e) for e in combinations]
    return combinations

def generateNgram(paper, ngram=2, deli='_', rmSet = {}):
    words = paper.split()
    if len(words) == 1:
        return ''
    
    ngrams = []
    for i in range(0,len(words) - ngram + 1):
        block = words[i:i + ngram]
        if not any(w in rmSet for w in block):
            ngrams.append(deli.join(block))
            
    return ngrams

def generatePassages(document, n):
    passages = []
    paragraphs = document.split('\n\n')
    for para in paragraphs:
        sentences = para.rsplit(' . ')
        
        if len(sentences) <= 8:
            passages.append(' '.join(sentences))
        else:
            for i in range(0, len(sentences) - n + 1):
                passages.append(' '.join([sentences[i + j] for j in range(0, n) if '?' not in sentences[i + j]]))
        
    return passages

def passage_score(q_ngrams,passage):
    try:
        passage = passage.lower()

        p_unigram = set(generateNgram(passage,1,'_',punct_set | stopwords))
        
        uni_score = len(p_unigram & q_ngrams['unigram'])

        p_bigram  = set(generateNgram(passage,2,'_',punct_set | stopwords))
        p_trigram = set(generateNgram(passage,3,'_',punct_set | stopwords))
        p_fourgram= set(generateNgram(passage,4,'_',punct_set))

        bi_score = len(p_bigram & q_ngrams['bigram'])
        tri_score = len(p_trigram & q_ngrams['trigram'])
        four_score = len(p_fourgram & q_ngrams['fourgram'])
        emd_sim = 0

        return uni_score + bi_score*2 + tri_score*3 + four_score*4 + emd_sim*3
    except:
        return 0

def passage_score_wrap(args):
    return passage_score(args[0],args[1])

def keyword_extraction(question):
    keywords = []
    question = question.replace('_',' ')

    words = pos_tag(question)
    for i in range(0, len(words)):
        words[i] = (words[i][0].replace(' ','_'), words[i][1])
        
    for token in words:
        word = token[0]
        pos = token[1]
        if word not in stopwords:
            keywords += word.lower().split('_')
    
    keywords = list(set(keywords))
    keywords = [[w] for w in keywords]
    
    return keywords

def isRelevant(text, keywords):
    text = text.lower().replace('_',' ')
    words = list(set([_ for word in keywords for _ in word]))
    for word in words:
        if word in text and word not in stopwords:
            return True
    return False

def removeDuplicate(documents):
    mapUnigram  = {}
    for doc in documents:
        mapUnigram[doc] = generateNgram(doc.lower(),1,'_',punct_set | stopwords)

    uniqueDocs = []
    for i in range(0,len(documents)):
        check = True
        for j in range(0,len(uniqueDocs)):
            check_doc  = mapUnigram[documents[i]]
            exists_doc = mapUnigram[uniqueDocs[j]]
            overlap_score = len( set(check_doc) & set(exists_doc) )
            if overlap_score >= 0.8 * len(set(check_doc)) or overlap_score >= 0.8 * len(set(exists_doc)):
                check = False
        if check:
            uniqueDocs.append(documents[i])
    
    return uniqueDocs

def rel_ranking(question, documents):
    #Return ranked list of passages from list of documents
    q_variants = generateVariants(question)
    q_keywords = keyword_extraction(question)

    q_ngrams = {'unigram': set(generateNgram(question.lower(), 1, '_', punct_set | stopwords)),
                'bigram' : set([]), 'trigram': set([]), 'fourgram': set([])}

    for q in q_variants:
        q = q.lower()
        q_ngrams['bigram']  = q_ngrams['bigram']   | set(generateNgram(q, 2, '_', punct_set | stopwords))
        q_ngrams['trigram'] = q_ngrams['trigram']  | set(generateNgram(q, 3, '_', punct_set | stopwords))
        q_ngrams['fourgram'] = q_ngrams['fourgram'] | set(generateNgram(q, 4, '_', punct_set))
    
    documents = [d for d in documents if isRelevant(d, q_keywords)]

    passages = [generatePassages(d, 8) for d in documents]
    passages = [j for i in passages for j in i]
    passages = [' '.join([_.strip() for _ in p.split()]) for p in passages]
    passages = list(set(passages))

    passages = [p for p in passages if isRelevant(p,q_keywords)]
    p_scores = []
    for p in passages:
        p_scores += [passage_score_wrap((q_ngrams, p))]

    p_res = numpy.argsort([-s for s in p_scores])
    relevantDocs = []
    for i in range(0, len(passages)):
        relevantDocs.append(passages[p_res[i]])
    relevantDocs = removeDuplicate(relevantDocs)
    
    return relevantDocs