namnh113's picture
Update app.py
a79f0de
raw
history blame
4.59 kB
import os, time, transformers
import streamlit as st
from model import MRCQuestionAnswering
from relevance_ranking import rel_ranking
from huggingface_hub import login
from infer import *
from gg_search import GoogleSearch, getContent
ggsearch = GoogleSearch()
class Chatbot():
def __init__(self):
st.header('🦜 Question answering')
st.warning("Warning: the processing may take long cause I have no any GPU now...")
st.info("This app uses google search engine for each input question...")
st.info("Type 'clear' to delete chat history...")
st.info("About me: namnh113")
self.API_KEY = st.sidebar.text_input(
'API key (not necessary for now)',
type='password',
help="Type in your HuggingFace API key to use this app")
login(token=os.environ['hf_api_key'])
self.model_checkpoint = 'namnh113/vi-mrc-large'
self.checkpoint = st.sidebar.selectbox(
label = "Choose model",
options = [self.model_checkpoint],
help="List available model to predict"
)
def generate_response(self, question):
try:
links, documents = ggsearch.search(question)
if not documents:
try:
for url in links:
docs = getContent(url)
if len(docs) > 20 and 'The security system for this website has been triggered. Completing the challenge below verifies you are a human and gives you access.' not in doc:
documents += [docs]
except:
pass
except:
pass
passages = rel_ranking(question, documents)
# get top 40 relevant passages
passages = '. '.join([p.replace('\n',', ') for p in passages[:40]])
QA_input = {
'question': question,
'context': passages }
if len(QA_input['question'].strip()) > 0:
start = time.time()
inputs = [tokenize_function(QA_input, tokenizer)]
inputs_ids = data_collator(inputs, tokenizer)
outputs = model(**inputs_ids)
answer = extract_answer(inputs, outputs, tokenizer)[0]
during = time.time() - start
print("answer: {}. \nScore start: {}, Score end: {}, Time: {}".format(answer['answer'],
answer['score_start'],
answer['score_end'], during))
answer = ' '.join([_.strip() for _ in answer['answer'].split()])
return answer if answer else 'No answer found !'
def form_data(self):
# with st.form('my_form'):
try:
if not self.API_KEY.startswith('hf_'):
st.warning('Please enter your API key!', icon='⚠')
if "messages" not in st.session_state:
st.session_state.messages = []
st.write(f"You are using {self.checkpoint} model")
for message in st.session_state.messages:
with st.chat_message(message.get('role')):
st.write(message.get("content"))
text = st.chat_input(disabled=False)
if text:
st.session_state.messages.append(
{
"role":"user",
"content": text
}
)
with st.chat_message("user"):
st.write(text)
if text.lower() == "clear":
del st.session_state.messages
return
result = self.generate_response(text)
st.session_state.messages.append(
{
"role": "assistant",
"content": result
}
)
with st.chat_message('assistant'):
st.markdown(result)
except Exception as e:
st.error(e, icon="🚨")
chatbot = Chatbot()
tokenizer = transformers.AutoTokenizer.from_pretrained(chatbot.model_checkpoint)
model = MRCQuestionAnswering.from_pretrained(chatbot.model_checkpoint)
chatbot.form_data()