import torch import torch.nn as nn from transformers.models.roberta.modeling_roberta import * class MRCQuestionAnswering(RobertaPreTrainedModel): config_class = RobertaConfig def _reorder_cache(self, past, beam_idx): pass _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids=None, words_lengths=None, start_idx=None, end_idx=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, span_answer_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] context_embedding = sequence_output # Compute align word sub_word matrix batch_size = input_ids.shape[0] max_sub_word = input_ids.shape[1] max_word = words_lengths.shape[1] align_matrix = torch.zeros((batch_size, max_word, max_sub_word)) for i, sample_length in enumerate(words_lengths): for j in range(len(sample_length)): start_idx = torch.sum(sample_length[:j]) align_matrix[i][j][start_idx: start_idx + sample_length[j]] = 1 if sample_length[j] > 0 else 0 align_matrix = align_matrix.to(context_embedding.device) # Combine sub_word features to make word feature context_embedding_align = torch.bmm(align_matrix, context_embedding) logits = self.qa_outputs(context_embedding_align) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )