Spaces:
Sleeping
Sleeping
from bs4 import BeautifulSoup | |
import urllib | |
import requests | |
import nltk | |
import torch | |
from typing import Union | |
from sentence_transformers import SentenceTransformer, util | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
class GoogleSearch: | |
def __init__(self, query: str) -> None: | |
self.query = query | |
escaped_query = urllib.parse.quote_plus(query) | |
self.URL = f"https://www.google.com/search?q={escaped_query}" | |
self.headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3538.102 Safari/537.36" | |
} | |
self.links = self.get_initial_links() | |
self.all_page_data = self.all_pages() | |
def clean_urls(self, anchors: list[str]) -> list[str]: | |
links: list[str] = [] | |
for a in anchors: | |
links.append( | |
list(filter(lambda l: l.startswith("url=http"), a["href"].split("&"))) | |
) | |
links = [ | |
link.split("url=")[-1] | |
for sublist in links | |
for link in sublist | |
if len(link) > 0 | |
] | |
return links | |
def read_url_page(self, url: str) -> str: | |
response = requests.get(url, headers=self.headers) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, "html.parser") | |
return soup.get_text(strip=True) | |
def get_initial_links(self) -> list[str]: | |
""" | |
scrape google for the query with keyword based search | |
""" | |
print("Searching Google...") | |
response = requests.get(self.URL, headers=self.headers) | |
soup = BeautifulSoup(response.text, "html.parser") | |
anchors = soup.find_all("a", href=True) | |
return self.clean_urls(anchors) | |
def all_pages(self) -> list[tuple[str, str]]: | |
data: list[tuple[str, str]] = [] | |
with ThreadPoolExecutor(max_workers=4) as executor: | |
future_to_url = { | |
executor.submit(self.read_url_page, url): url for url in self.links | |
} | |
for future in as_completed(future_to_url): | |
url = future_to_url[future] | |
try: | |
output = future.result() | |
data.append((url, output)) | |
except requests.exceptions.HTTPError as e: | |
print(e) | |
# for url in self.links: | |
# try: | |
# data.append((url, self.read_url_page(url))) | |
# except requests.exceptions.HTTPError as e: | |
# print(e) | |
return data | |
class Document: | |
def __init__(self, data: list[tuple[str, str]], min_char_len: int) -> None: | |
""" | |
data : list[tuple[str, str]] | |
url and page data | |
""" | |
self.data = data | |
self.min_char_len = min_char_len | |
def make_min_len_chunk(self): | |
raise NotImplementedError | |
def chunk_page( | |
self, | |
page_text: str, | |
) -> list[str]: | |
min_len_chunks: list[str] = [] | |
chunk_text = nltk.tokenize.sent_tokenize(page_text) | |
sentence: str = "" | |
for sent in chunk_text: | |
if len(sentence) > self.min_char_len: | |
min_len_chunks.append(sentence) | |
sent = "" | |
sentence = "" | |
else: | |
sentence += sent | |
return min_len_chunks | |
def doc(self) -> tuple[list[str], list[str]]: | |
print("Creating Document...") | |
chunked_data: list[str] = [] | |
urls: list[str] = [] | |
for url, dataitem in self.data: | |
data = self.chunk_page(dataitem) | |
chunked_data.append(data) | |
urls.append(url) | |
chunked_data = [chunk for sublist in chunked_data for chunk in sublist] | |
return chunked_data, url | |
class SemanticSearch: | |
def __init__( | |
self, doc_chunks: tuple[list, list], model_path: str, device: str | |
) -> None: | |
self.doc_chunks, self.urls = doc_chunks | |
self.st = SentenceTransformer( | |
model_path, | |
device, | |
) | |
def semantic_search(self, query: str, k: int = 10): | |
print("Searching Top k in document...") | |
query_embeding = self.get_embeding(query) | |
doc_embeding = self.get_embeding(self.doc_chunks) | |
scores = util.dot_score(a=query_embeding, b=doc_embeding)[0] | |
top_k = torch.topk(scores, k=k)[1].cpu().tolist() | |
return [self.doc_chunks[i] for i in top_k], self.urls | |
def get_embeding(self, text: Union[list[str], str]): | |
en = self.st.encode(text) | |
return en | |