File size: 8,077 Bytes
10c8635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import type { Express } from "express";
import { createServer, type Server } from "http";
import {
  GoogleGenerativeAI,
  type ChatSession,
  type GenerateContentResult,
} from "@google/generative-ai";
import { marked } from "marked";
import { setupEnvironment } from "./env";

const env = setupEnvironment();
const genAI = new GoogleGenerativeAI(env.GOOGLE_API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-2.0-flash-exp",
  generationConfig: {
    temperature: 0.9,
    topP: 1,
    topK: 1,
    maxOutputTokens: 2048,
  },
});

// Store chat sessions in memory
const chatSessions = new Map<string, ChatSession>();

// Format raw text into proper markdown
async function formatResponseToMarkdown(
  text: string | Promise<string>
): Promise<string> {
  // Ensure we have a string to work with
  const resolvedText = await Promise.resolve(text);

  // First, ensure consistent newlines
  let processedText = resolvedText.replace(/\r\n/g, "\n");

  // Process main sections (lines that start with word(s) followed by colon)
  processedText = processedText.replace(
    /^([A-Za-z][A-Za-z\s]+):(\s*)/gm,
    "## $1$2"
  );

  // Process sub-sections (any remaining word(s) followed by colon within text)
  processedText = processedText.replace(
    /(?<=\n|^)([A-Za-z][A-Za-z\s]+):(?!\d)/gm,
    "### $1"
  );

  // Process bullet points
  processedText = processedText.replace(/^[‒●○]\s*/gm, "* ");

  // Split into paragraphs
  const paragraphs = processedText.split("\n\n").filter(Boolean);

  // Process each paragraph
  const formatted = paragraphs
    .map((p) => {
      // If it's a header or list item, preserve it
      if (p.startsWith("#") || p.startsWith("*") || p.startsWith("-")) {
        return p;
      }
      // Add proper paragraph formatting
      return `${p}\n`;
    })
    .join("\n\n");

  // Configure marked options for better header rendering
  marked.setOptions({
    gfm: true,
    breaks: true,
  });

  // Convert markdown to HTML using marked
  return marked.parse(formatted);
}

interface WebSource {
  uri: string;
  title: string;
}

interface GroundingChunk {
  web?: WebSource;
}

interface TextSegment {
  startIndex: number;
  endIndex: number;
  text: string;
}

interface GroundingSupport {
  segment: TextSegment;
  groundingChunkIndices: number[];
  confidenceScores: number[];
}

interface GroundingMetadata {
  groundingChunks: GroundingChunk[];
  groundingSupports: GroundingSupport[];
  searchEntryPoint?: any;
  webSearchQueries?: string[];
}

export function registerRoutes(app: Express): Server {
  // Search endpoint - creates a new chat session
  app.get("/api/search", async (req, res) => {
    try {
      const query = req.query.q as string;

      if (!query) {
        return res.status(400).json({
          message: "Query parameter 'q' is required",
        });
      }

      // Create a new chat session with search capability
      const chat = model.startChat({
        tools: [
          {
            // @ts-ignore - google_search is a valid tool but not typed in the SDK yet
            google_search: {},
          },
        ],
      });

      // Generate content with search tool
      const result = await chat.sendMessage(query);
      const response = await result.response;
      console.log(
        "Raw Google API Response:",
        JSON.stringify(
          {
            text: response.text(),
            candidates: response.candidates,
            groundingMetadata: response.candidates?.[0]?.groundingMetadata,
          },
          null,
          2
        )
      );
      const text = response.text();

      // Format the response text to proper markdown/HTML
      const formattedText = await formatResponseToMarkdown(text);

      // Extract sources from grounding metadata
      const sourceMap = new Map<
        string,
        { title: string; url: string; snippet: string }
      >();

      // Get grounding metadata from response
      const metadata = response.candidates?.[0]?.groundingMetadata as any;
      if (metadata) {
        const chunks = metadata.groundingChunks || [];
        const supports = metadata.groundingSupports || [];

        chunks.forEach((chunk: any, index: number) => {
          if (chunk.web?.uri && chunk.web?.title) {
            const url = chunk.web.uri;
            if (!sourceMap.has(url)) {
              // Find snippets that reference this chunk
              const snippets = supports
                .filter((support: any) =>
                  support.groundingChunkIndices.includes(index)
                )
                .map((support: any) => support.segment.text)
                .join(" ");

              sourceMap.set(url, {
                title: chunk.web.title,
                url: url,
                snippet: snippets || "",
              });
            }
          }
        });
      }

      const sources = Array.from(sourceMap.values());

      // Generate a session ID and store the chat
      const sessionId = Math.random().toString(36).substring(7);
      chatSessions.set(sessionId, chat);

      res.json({
        sessionId,
        summary: formattedText,
        sources,
      });
    } catch (error: any) {
      console.error("Search error:", error);
      res.status(500).json({
        message:
          error.message || "An error occurred while processing your search",
      });
    }
  });

  // Follow-up endpoint - continues existing chat session
  app.post("/api/follow-up", async (req, res) => {
    try {
      const { sessionId, query } = req.body;

      if (!sessionId || !query) {
        return res.status(400).json({
          message: "Both sessionId and query are required",
        });
      }

      const chat = chatSessions.get(sessionId);
      if (!chat) {
        return res.status(404).json({
          message: "Chat session not found",
        });
      }

      // Send follow-up message in existing chat
      const result = await chat.sendMessage(query);
      const response = await result.response;
      console.log(
        "Raw Google API Follow-up Response:",
        JSON.stringify(
          {
            text: response.text(),
            candidates: response.candidates,
            groundingMetadata: response.candidates?.[0]?.groundingMetadata,
          },
          null,
          2
        )
      );
      const text = response.text();

      // Format the response text to proper markdown/HTML
      const formattedText = await formatResponseToMarkdown(text);

      // Extract sources from grounding metadata
      const sourceMap = new Map<
        string,
        { title: string; url: string; snippet: string }
      >();

      // Get grounding metadata from response
      const metadata = response.candidates?.[0]?.groundingMetadata as any;
      if (metadata) {
        const chunks = metadata.groundingChunks || [];
        const supports = metadata.groundingSupports || [];

        chunks.forEach((chunk: any, index: number) => {
          if (chunk.web?.uri && chunk.web?.title) {
            const url = chunk.web.uri;
            if (!sourceMap.has(url)) {
              // Find snippets that reference this chunk
              const snippets = supports
                .filter((support: any) =>
                  support.groundingChunkIndices.includes(index)
                )
                .map((support: any) => support.segment.text)
                .join(" ");

              sourceMap.set(url, {
                title: chunk.web.title,
                url: url,
                snippet: snippets || "",
              });
            }
          }
        });
      }

      const sources = Array.from(sourceMap.values());

      res.json({
        summary: formattedText,
        sources,
      });
    } catch (error: any) {
      console.error("Follow-up error:", error);
      res.status(500).json({
        message:
          error.message ||
          "An error occurred while processing your follow-up question",
      });
    }
  });

  const httpServer = createServer(app);
  return httpServer;
}