Spaces:
Running
Running
""" | |
Prints out the ratio of activation memory for the MLP layer when using ReLU vs GELU. | |
""" | |
import torch | |
import torch.nn as nn | |
import act_mem | |
import layers | |
if __name__ == "__main__": | |
batch_size, seq_len, d_model, dropout_prob = 1, 128, 1024, 0.1 | |
print(f"Batch size: {batch_size}, sequence length: {seq_len}, d_model: {d_model}, dropout_prob: {dropout_prob} ") | |
dtype = torch.bfloat16 | |
inputs = torch.randn( | |
batch_size, | |
seq_len, | |
d_model, | |
device="cuda", | |
requires_grad=True, | |
dtype=dtype, | |
) | |
act_fn_dict = {"ReLU": nn.ReLU() , "GELU": nn.GELU(), "silu": nn.SiLU()} | |
# Append outputs to a list to keep tensors alive | |
outputs = [] | |
mem_bytes = [] | |
for name, act_fn in act_fn_dict.items(): | |
if name == "silu": | |
mlp = layers.SwiGLUMLP( | |
d_model=d_model, | |
intermediate_size=4 * d_model, | |
act_fn=act_fn, | |
dropout_prob=dropout_prob, | |
device="cuda", | |
dtype=dtype, | |
) | |
else: | |
mlp = layers.MLP( | |
d_model=d_model, | |
act_fn=act_fn, | |
dropout_prob=dropout_prob, | |
device="cuda", | |
dtype=dtype, | |
) | |
with act_mem.AllocatedMemContext() as mem, act_mem.SavedTensorContext( | |
ignored_tensors=mlp.parameters() | |
) as saved: | |
out = mlp(inputs) | |
outputs.append(out) | |
stm = saved.saved_tensor_mem | |
assert mem.delta["current"] == stm | |
print(f"{name} bytes: {act_mem.B_to_GiB(stm)}") | |
mem_bytes.append(stm) | |
print(f"ReLU/GELU act mem ratio: {mem_bytes[0]/mem_bytes[1]}") | |