File size: 47,370 Bytes
f8610ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
2023/02/24 05:13:32 - mmengine - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
    CUDA available: True
    numpy_random_seed: 1569491978
    GPU 0: Tesla T4
    CUDA_HOME: /usr/local/cuda
    NVCC: Cuda compilation tools, release 11.6, V11.6.124
    GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
    PyTorch: 1.13.1+cu116
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.6
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.3.2  (built against CUDA 11.5)
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

    TorchVision: 0.14.1+cu116
    OpenCV: 4.6.0
    MMEngine: 0.5.0

Runtime environment:
    cudnn_benchmark: True
    mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
    dist_cfg: {'backend': 'nccl'}
    seed: None
    Distributed launcher: none
    Distributed training: False
    GPU number: 1
------------------------------------------------------------

2023/02/24 05:13:33 - mmengine - INFO - Config:
file_client_args = dict(backend='disk')
model = dict(
    type='DBNet',
    backbone=dict(
        type='mmdet.ResNet',
        depth=18,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=-1,
        norm_cfg=dict(type='BN', requires_grad=True),
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
        norm_eval=False,
        style='caffe'),
    neck=dict(
        type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
    det_head=dict(
        type='DBHead',
        in_channels=256,
        module_loss=dict(type='DBModuleLoss'),
        postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
    data_preprocessor=dict(
        type='TextDetDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=32))
train_pipeline = [
    dict(
        type='LoadImageFromFile',
        file_client_args=dict(backend='disk'),
        color_type='color_ignore_orientation'),
    dict(
        type='LoadOCRAnnotations',
        with_polygon=True,
        with_bbox=True,
        with_label=True),
    dict(
        type='TorchVisionWrapper',
        op='ColorJitter',
        brightness=0.12549019607843137,
        saturation=0.5),
    dict(
        type='ImgAugWrapper',
        args=[['Fliplr', 0.5], {
            'cls': 'Affine',
            'rotate': [-10, 10]
        }, ['Resize', [0.5, 3.0]]]),
    dict(type='RandomCrop', min_side_ratio=0.1),
    dict(type='Resize', scale=(640, 640), keep_ratio=True),
    dict(type='Pad', size=(640, 640)),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape'))
]
test_pipeline = [
    dict(
        type='LoadImageFromFile',
        file_client_args=dict(backend='disk'),
        color_type='color_ignore_orientation'),
    dict(type='Resize', scale=(1333, 736), keep_ratio=True),
    dict(
        type='LoadOCRAnnotations',
        with_polygon=True,
        with_bbox=True,
        with_label=True),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
icdar2015_textdet_data_root = 'data/det/textdet-thvote'
icdar2015_textdet_train = dict(
    type='OCRDataset',
    data_root='data/det/textdet-thvote',
    ann_file='textdet_train.json',
    data_prefix=dict(img_path='imgs/'),
    filter_cfg=dict(filter_empty_gt=True, min_size=32),
    pipeline=[
        dict(
            type='LoadImageFromFile',
            file_client_args=dict(backend='disk'),
            color_type='color_ignore_orientation'),
        dict(
            type='LoadOCRAnnotations',
            with_polygon=True,
            with_bbox=True,
            with_label=True),
        dict(
            type='TorchVisionWrapper',
            op='ColorJitter',
            brightness=0.12549019607843137,
            saturation=0.5),
        dict(
            type='ImgAugWrapper',
            args=[['Fliplr', 0.5], {
                'cls': 'Affine',
                'rotate': [-10, 10]
            }, ['Resize', [0.5, 3.0]]]),
        dict(type='RandomCrop', min_side_ratio=0.1),
        dict(type='Resize', scale=(640, 640), keep_ratio=True),
        dict(type='Pad', size=(640, 640)),
        dict(
            type='PackTextDetInputs',
            meta_keys=('img_path', 'ori_shape', 'img_shape'))
    ])
icdar2015_textdet_test = dict(
    type='OCRDataset',
    data_root='data/det/textdet-thvote',
    ann_file='textdet_test.json',
    data_prefix=dict(img_path='imgs/'),
    test_mode=True,
    pipeline=[
        dict(
            type='LoadImageFromFile',
            file_client_args=dict(backend='disk'),
            color_type='color_ignore_orientation'),
        dict(type='Resize', scale=(1333, 736), keep_ratio=True),
        dict(
            type='LoadOCRAnnotations',
            with_polygon=True,
            with_bbox=True,
            with_label=True),
        dict(
            type='PackTextDetInputs',
            meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
    ])
default_scope = 'mmocr'
env_cfg = dict(
    cudnn_benchmark=True,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'))
randomness = dict(seed=None)
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=5),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', interval=20),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    sync_buffer=dict(type='SyncBuffersHook'),
    visualization=dict(
        type='VisualizationHook',
        interval=1,
        enable=False,
        show=False,
        draw_gt=False,
        draw_pred=False))
log_level = 'INFO'
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
load_from = None
resume = False
val_evaluator = dict(type='HmeanIOUMetric')
test_evaluator = dict(type='HmeanIOUMetric')
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='TextDetLocalVisualizer',
    name='visualizer',
    vis_backends=[dict(type='LocalVisBackend')])
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
train_dataloader = dict(
    batch_size=16,
    num_workers=8,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='OCRDataset',
        data_root='data/det/textdet-thvote',
        ann_file='textdet_train.json',
        data_prefix=dict(img_path='imgs/'),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=[
            dict(
                type='LoadImageFromFile',
                file_client_args=dict(backend='disk'),
                color_type='color_ignore_orientation'),
            dict(
                type='LoadOCRAnnotations',
                with_polygon=True,
                with_bbox=True,
                with_label=True),
            dict(
                type='TorchVisionWrapper',
                op='ColorJitter',
                brightness=0.12549019607843137,
                saturation=0.5),
            dict(
                type='ImgAugWrapper',
                args=[['Fliplr', 0.5], {
                    'cls': 'Affine',
                    'rotate': [-10, 10]
                }, ['Resize', [0.5, 3.0]]]),
            dict(type='RandomCrop', min_side_ratio=0.1),
            dict(type='Resize', scale=(640, 640), keep_ratio=True),
            dict(type='Pad', size=(640, 640)),
            dict(
                type='PackTextDetInputs',
                meta_keys=('img_path', 'ori_shape', 'img_shape'))
        ]))
val_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='OCRDataset',
        data_root='data/det/textdet-thvote',
        ann_file='textdet_test.json',
        data_prefix=dict(img_path='imgs/'),
        test_mode=True,
        pipeline=[
            dict(
                type='LoadImageFromFile',
                file_client_args=dict(backend='disk'),
                color_type='color_ignore_orientation'),
            dict(type='Resize', scale=(1333, 736), keep_ratio=True),
            dict(
                type='LoadOCRAnnotations',
                with_polygon=True,
                with_bbox=True,
                with_label=True),
            dict(
                type='PackTextDetInputs',
                meta_keys=('img_path', 'ori_shape', 'img_shape',
                           'scale_factor'))
        ]))
test_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='OCRDataset',
        data_root='data/det/textdet-thvote',
        ann_file='textdet_test.json',
        data_prefix=dict(img_path='imgs/'),
        test_mode=True,
        pipeline=[
            dict(
                type='LoadImageFromFile',
                file_client_args=dict(backend='disk'),
                color_type='color_ignore_orientation'),
            dict(type='Resize', scale=(1333, 736), keep_ratio=True),
            dict(
                type='LoadOCRAnnotations',
                with_polygon=True,
                with_bbox=True,
                with_label=True),
            dict(
                type='PackTextDetInputs',
                meta_keys=('img_path', 'ori_shape', 'img_shape',
                           'scale_factor'))
        ]))
auto_scale_lr = dict(base_batch_size=16)
launcher = 'none'
work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'

2023/02/24 05:13:33 - mmengine - WARNING - The "visualizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:33 - mmengine - WARNING - The "vis_backend" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmdet did not set import location. Fallback to call `mmdet.utils.register_all_modules` instead.
2023/02/24 05:13:38 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
2023/02/24 05:13:38 - mmengine - WARNING - The "hook" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:38 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) RuntimeInfoHook                    
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
before_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(NORMAL      ) DistSamplerSeedHook                
 -------------------- 
before_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) IterTimerHook                      
(NORMAL      ) SyncBuffersHook                    
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_val_epoch:
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_val_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_val_iter:
(NORMAL      ) IterTimerHook                      
(NORMAL      ) VisualizationHook                  
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_val_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_test_epoch:
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_test_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_test_iter:
(NORMAL      ) IterTimerHook                      
(NORMAL      ) VisualizationHook                  
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_test_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_run:
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
2023/02/24 05:13:39 - mmengine - WARNING - The "loop" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "dataset" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "transform" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "data sampler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer constructor" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "optim wrapper" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "parameter scheduler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:40 - mmengine - WARNING - The "metric" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:40 - mmengine - WARNING - The "weight initializer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:40 - mmengine - INFO - load model from: torchvision://resnet18
2023/02/24 05:13:40 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet18
2023/02/24 05:13:40 - mmengine - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: fc.weight, fc.bias

Name of parameter - Initialization information

backbone.conv1.weight - torch.Size([64, 3, 7, 7]): 
PretrainedInit: load from torchvision://resnet18 

backbone.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.0.conv1.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.0.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.0.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.0.bn2.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.0.bn2.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.1.conv1.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.1.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.1.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.1.bn2.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer1.1.bn2.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.conv1.weight - torch.Size([128, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.bn1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.bn1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.bn2.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.bn2.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.downsample.0.weight - torch.Size([128, 64, 1, 1]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.downsample.1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.0.downsample.1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.1.conv1.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.1.bn1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.1.bn1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.1.bn2.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer2.1.bn2.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.conv1.weight - torch.Size([256, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.downsample.0.weight - torch.Size([256, 128, 1, 1]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.downsample.1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.0.downsample.1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.1.conv1.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.1.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.1.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.1.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer3.1.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.conv1.weight - torch.Size([512, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.bn1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.bn1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.bn2.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.bn2.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.downsample.0.weight - torch.Size([512, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.downsample.1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.0.downsample.1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.1.conv1.weight - torch.Size([512, 512, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.1.bn1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.1.bn1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.1.bn2.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

backbone.layer4.1.bn2.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet18 

neck.lateral_convs.0.conv.weight - torch.Size([256, 64, 1, 1]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.lateral_convs.1.conv.weight - torch.Size([256, 128, 1, 1]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.lateral_convs.2.conv.weight - torch.Size([256, 256, 1, 1]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.lateral_convs.3.conv.weight - torch.Size([256, 512, 1, 1]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.smooth_convs.0.conv.weight - torch.Size([64, 256, 3, 3]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.smooth_convs.1.conv.weight - torch.Size([64, 256, 3, 3]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.smooth_convs.2.conv.weight - torch.Size([64, 256, 3, 3]): 
Initialized by user-defined `init_weights` in ConvModule  

neck.smooth_convs.3.conv.weight - torch.Size([64, 256, 3, 3]): 
Initialized by user-defined `init_weights` in ConvModule  

det_head.binarize.0.weight - torch.Size([64, 256, 3, 3]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.1.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.1.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.3.weight - torch.Size([64, 64, 2, 2]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.3.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.4.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.4.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.6.weight - torch.Size([64, 1, 2, 2]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.binarize.6.bias - torch.Size([1]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.0.weight - torch.Size([64, 256, 3, 3]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.1.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.1.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.3.weight - torch.Size([64, 64, 2, 2]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.3.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.4.weight - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.4.bias - torch.Size([64]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.6.weight - torch.Size([64, 1, 2, 2]): 
The value is the same before and after calling `init_weights` of DBNet  

det_head.threshold.6.bias - torch.Size([1]): 
The value is the same before and after calling `init_weights` of DBNet  
2023/02/24 05:13:40 - mmengine - INFO - Checkpoints will be saved to /content/mmocr/work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015.
2023/02/24 05:16:48 - mmengine - INFO - Epoch(train)    [1][ 5/22]  lr: 7.0000e-03  eta: 11 days, 10:56:37  time: 37.4994  data_time: 13.3666  memory: 12058  loss: 10.5798  loss_prob: 7.3334  loss_thr: 2.3504  loss_db: 0.8960
2023/02/24 05:17:25 - mmengine - INFO - Epoch(train)    [1][10/22]  lr: 7.0000e-03  eta: 6 days, 20:37:40  time: 22.4578  data_time: 6.7581  memory: 6713  loss: 8.0422  loss_prob: 5.2998  loss_thr: 1.8354  loss_db: 0.9071
2023/02/24 05:17:49 - mmengine - INFO - Epoch(train)    [1][15/22]  lr: 7.0000e-03  eta: 5 days, 1:36:06  time: 6.1375  data_time: 0.0814  memory: 6713  loss: 5.2709  loss_prob: 3.0675  loss_thr: 1.2472  loss_db: 0.9562
2023/02/24 05:18:13 - mmengine - INFO - Epoch(train)    [1][20/22]  lr: 7.0000e-03  eta: 4 days, 3:52:43  time: 4.8026  data_time: 0.0312  memory: 6713  loss: 4.9844  loss_prob: 2.8490  loss_thr: 1.1389  loss_db: 0.9965
2023/02/24 05:18:25 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:21:34 - mmengine - INFO - Epoch(train)    [2][ 5/22]  lr: 6.9947e-03  eta: 5 days, 8:31:25  time: 21.5618  data_time: 7.1003  memory: 11447  loss: 4.8425  loss_prob: 2.8106  loss_thr: 1.0607  loss_db: 0.9712
2023/02/24 05:22:09 - mmengine - INFO - Epoch(train)    [2][10/22]  lr: 6.9947e-03  eta: 4 days, 20:24:29  time: 22.4338  data_time: 7.1646  memory: 6712  loss: 4.7001  loss_prob: 2.7874  loss_thr: 1.1015  loss_db: 0.8112
2023/02/24 05:22:33 - mmengine - INFO - Epoch(train)    [2][15/22]  lr: 6.9947e-03  eta: 4 days, 9:30:51  time: 5.9429  data_time: 0.0877  memory: 6712  loss: 4.4307  loss_prob: 2.7478  loss_thr: 1.1405  loss_db: 0.5424
2023/02/24 05:22:56 - mmengine - INFO - Epoch(train)    [2][20/22]  lr: 6.9947e-03  eta: 4 days, 0:51:26  time: 4.7033  data_time: 0.0489  memory: 6712  loss: 4.1205  loss_prob: 2.6747  loss_thr: 1.0579  loss_db: 0.3879
2023/02/24 05:23:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:25:58 - mmengine - INFO - Epoch(train)    [3][ 5/22]  lr: 6.9895e-03  eta: 4 days, 14:13:27  time: 19.7292  data_time: 6.3200  memory: 6712  loss: 3.7028  loss_prob: 2.4246  loss_thr: 0.9721  loss_db: 0.3061
2023/02/24 05:26:33 - mmengine - INFO - Epoch(train)    [3][10/22]  lr: 6.9895e-03  eta: 4 days, 8:44:41  time: 20.8299  data_time: 6.3501  memory: 6712  loss: 3.4052  loss_prob: 2.1909  loss_thr: 0.9435  loss_db: 0.2709
2023/02/24 05:26:53 - mmengine - INFO - Epoch(train)    [3][15/22]  lr: 6.9895e-03  eta: 4 days, 2:14:03  time: 5.4242  data_time: 0.0758  memory: 6712  loss: 3.1914  loss_prob: 2.0126  loss_thr: 0.9125  loss_db: 0.2664
2023/02/24 05:27:15 - mmengine - INFO - Epoch(train)    [3][20/22]  lr: 6.9895e-03  eta: 3 days, 21:04:03  time: 4.1317  data_time: 0.0486  memory: 6712  loss: 2.9899  loss_prob: 1.8336  loss_thr: 0.8950  loss_db: 0.2613
2023/02/24 05:27:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:30:21 - mmengine - INFO - Epoch(train)    [4][ 5/22]  lr: 6.9842e-03  eta: 4 days, 7:06:23  time: 19.9728  data_time: 6.5625  memory: 6712  loss: 2.7135  loss_prob: 1.6040  loss_thr: 0.8757  loss_db: 0.2338
2023/02/24 05:30:55 - mmengine - INFO - Epoch(train)    [4][10/22]  lr: 6.9842e-03  eta: 4 days, 3:31:24  time: 21.1335  data_time: 6.5916  memory: 6712  loss: 2.5669  loss_prob: 1.4807  loss_thr: 0.8647  loss_db: 0.2215
2023/02/24 05:31:16 - mmengine - INFO - Epoch(train)    [4][15/22]  lr: 6.9842e-03  eta: 3 days, 23:16:49  time: 5.4703  data_time: 0.0655  memory: 6712  loss: 2.5318  loss_prob: 1.4490  loss_thr: 0.8641  loss_db: 0.2187
2023/02/24 05:31:37 - mmengine - INFO - Epoch(train)    [4][20/22]  lr: 6.9842e-03  eta: 3 days, 19:28:30  time: 4.1855  data_time: 0.0463  memory: 6712  loss: 2.4536  loss_prob: 1.3779  loss_thr: 0.8595  loss_db: 0.2161
2023/02/24 05:31:43 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:34:41 - mmengine - INFO - Epoch(train)    [5][ 5/22]  lr: 6.9790e-03  eta: 4 days, 3:03:02  time: 19.6819  data_time: 6.5648  memory: 6712  loss: 2.2837  loss_prob: 1.2531  loss_thr: 0.8280  loss_db: 0.2027
2023/02/24 05:35:13 - mmengine - INFO - Epoch(train)    [5][10/22]  lr: 6.9790e-03  eta: 4 days, 0:23:14  time: 20.9855  data_time: 6.6279  memory: 6712  loss: 2.2122  loss_prob: 1.1990  loss_thr: 0.8168  loss_db: 0.1964
2023/02/24 05:35:36 - mmengine - INFO - Epoch(train)    [5][15/22]  lr: 6.9790e-03  eta: 3 days, 21:16:29  time: 5.4636  data_time: 0.0946  memory: 6712  loss: 2.1482  loss_prob: 1.1455  loss_thr: 0.8120  loss_db: 0.1906
2023/02/24 05:35:57 - mmengine - INFO - Epoch(train)    [5][20/22]  lr: 6.9790e-03  eta: 3 days, 18:24:00  time: 4.3929  data_time: 0.0363  memory: 6712  loss: 2.2215  loss_prob: 1.2052  loss_thr: 0.8195  loss_db: 0.1968
2023/02/24 05:36:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:39:01 - mmengine - INFO - Epoch(train)    [6][ 5/22]  lr: 6.9737e-03  eta: 4 days, 0:33:26  time: 19.8343  data_time: 6.6865  memory: 6712  loss: 2.2092  loss_prob: 1.1873  loss_thr: 0.8270  loss_db: 0.1949
2023/02/24 05:39:35 - mmengine - INFO - Epoch(train)    [6][10/22]  lr: 6.9737e-03  eta: 3 days, 22:34:41  time: 21.0220  data_time: 6.7316  memory: 6712  loss: 2.0882  loss_prob: 1.0934  loss_thr: 0.8093  loss_db: 0.1856
2023/02/24 05:39:55 - mmengine - INFO - Epoch(train)    [6][15/22]  lr: 6.9737e-03  eta: 3 days, 19:56:56  time: 5.3949  data_time: 0.0639  memory: 6712  loss: 2.0953  loss_prob: 1.1014  loss_thr: 0.8072  loss_db: 0.1867
2023/02/24 05:40:15 - mmengine - INFO - Epoch(train)    [6][20/22]  lr: 6.9737e-03  eta: 3 days, 17:30:13  time: 3.9802  data_time: 0.0307  memory: 6712  loss: 2.1803  loss_prob: 1.1807  loss_thr: 0.8064  loss_db: 0.1932
2023/02/24 05:40:24 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:43:18 - mmengine - INFO - Epoch(train)    [7][ 5/22]  lr: 6.9685e-03  eta: 3 days, 22:38:09  time: 19.3378  data_time: 6.0656  memory: 6712  loss: 2.1125  loss_prob: 1.1454  loss_thr: 0.7801  loss_db: 0.1870
2023/02/24 05:43:52 - mmengine - INFO - Epoch(train)    [7][10/22]  lr: 6.9685e-03  eta: 3 days, 21:03:26  time: 20.8409  data_time: 6.1127  memory: 6712  loss: 2.1082  loss_prob: 1.1444  loss_thr: 0.7752  loss_db: 0.1886
2023/02/24 05:44:14 - mmengine - INFO - Epoch(train)    [7][15/22]  lr: 6.9685e-03  eta: 3 days, 18:57:55  time: 5.6460  data_time: 0.0896  memory: 6712  loss: 2.0828  loss_prob: 1.1309  loss_thr: 0.7652  loss_db: 0.1867
2023/02/24 05:44:35 - mmengine - INFO - Epoch(train)    [7][20/22]  lr: 6.9685e-03  eta: 3 days, 16:56:45  time: 4.2613  data_time: 0.0588  memory: 6712  loss: 1.9454  loss_prob: 1.0347  loss_thr: 0.7355  loss_db: 0.1752
2023/02/24 05:44:42 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:47:42 - mmengine - INFO - Epoch(train)    [8][ 5/22]  lr: 6.9632e-03  eta: 3 days, 21:35:37  time: 20.0738  data_time: 7.0659  memory: 6712  loss: 1.9103  loss_prob: 1.0182  loss_thr: 0.7198  loss_db: 0.1723
2023/02/24 05:48:18 - mmengine - INFO - Epoch(train)    [8][10/22]  lr: 6.9632e-03  eta: 3 days, 20:19:25  time: 21.6464  data_time: 7.0947  memory: 6712  loss: 1.9593  loss_prob: 1.0665  loss_thr: 0.7176  loss_db: 0.1751
2023/02/24 05:48:41 - mmengine - INFO - Epoch(train)    [8][15/22]  lr: 6.9632e-03  eta: 3 days, 18:33:12  time: 5.8713  data_time: 0.0769  memory: 6712  loss: 1.9544  loss_prob: 1.0733  loss_thr: 0.7049  loss_db: 0.1762
2023/02/24 05:49:01 - mmengine - INFO - Epoch(train)    [8][20/22]  lr: 6.9632e-03  eta: 3 days, 16:48:01  time: 4.3373  data_time: 0.0467  memory: 6712  loss: 1.8306  loss_prob: 0.9863  loss_thr: 0.6770  loss_db: 0.1673
2023/02/24 05:49:08 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:52:08 - mmengine - INFO - Epoch(train)    [9][ 5/22]  lr: 6.9580e-03  eta: 3 days, 20:51:50  time: 20.0004  data_time: 6.3228  memory: 6712  loss: 1.9089  loss_prob: 1.0586  loss_thr: 0.6772  loss_db: 0.1731
2023/02/24 05:52:41 - mmengine - INFO - Epoch(train)    [9][10/22]  lr: 6.9580e-03  eta: 3 days, 19:38:00  time: 21.3337  data_time: 6.3790  memory: 6712  loss: 1.8955  loss_prob: 1.0480  loss_thr: 0.6761  loss_db: 0.1714
2023/02/24 05:53:02 - mmengine - INFO - Epoch(train)    [9][15/22]  lr: 6.9580e-03  eta: 3 days, 17:59:55  time: 5.3263  data_time: 0.0722  memory: 6712  loss: 1.7788  loss_prob: 0.9520  loss_thr: 0.6654  loss_db: 0.1614
2023/02/24 05:53:21 - mmengine - INFO - Epoch(train)    [9][20/22]  lr: 6.9580e-03  eta: 3 days, 16:25:34  time: 4.0420  data_time: 0.0361  memory: 6712  loss: 1.8003  loss_prob: 0.9682  loss_thr: 0.6678  loss_db: 0.1643
2023/02/24 05:53:31 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:56:27 - mmengine - INFO - Epoch(train)   [10][ 5/22]  lr: 6.9527e-03  eta: 3 days, 20:00:04  time: 19.6905  data_time: 6.3250  memory: 6712  loss: 1.8357  loss_prob: 0.9859  loss_thr: 0.6834  loss_db: 0.1663
2023/02/24 05:57:04 - mmengine - INFO - Epoch(train)   [10][10/22]  lr: 6.9527e-03  eta: 3 days, 19:04:40  time: 21.3082  data_time: 6.3498  memory: 6712  loss: 1.8376  loss_prob: 0.9889  loss_thr: 0.6809  loss_db: 0.1677
2023/02/24 05:57:27 - mmengine - INFO - Epoch(train)   [10][15/22]  lr: 6.9527e-03  eta: 3 days, 17:43:00  time: 6.0559  data_time: 0.0570  memory: 6712  loss: 1.7998  loss_prob: 0.9688  loss_thr: 0.6660  loss_db: 0.1651
2023/02/24 05:57:48 - mmengine - INFO - Epoch(train)   [10][20/22]  lr: 6.9527e-03  eta: 3 days, 16:20:24  time: 4.4162  data_time: 0.0306  memory: 6712  loss: 1.8812  loss_prob: 1.0357  loss_thr: 0.6779  loss_db: 0.1676
2023/02/24 05:57:55 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:01:01 - mmengine - INFO - Epoch(train)   [11][ 5/22]  lr: 6.9474e-03  eta: 3 days, 19:46:57  time: 20.5701  data_time: 7.2858  memory: 6712  loss: 1.8385  loss_prob: 1.0164  loss_thr: 0.6580  loss_db: 0.1641
2023/02/24 06:01:42 - mmengine - INFO - Epoch(train)   [11][10/22]  lr: 6.9474e-03  eta: 3 days, 19:04:25  time: 22.6877  data_time: 7.3177  memory: 6712  loss: 1.7372  loss_prob: 0.9383  loss_thr: 0.6403  loss_db: 0.1586
2023/02/24 06:02:04 - mmengine - INFO - Epoch(train)   [11][15/22]  lr: 6.9474e-03  eta: 3 days, 17:48:05  time: 6.3309  data_time: 0.0664  memory: 6712  loss: 1.8261  loss_prob: 1.0116  loss_thr: 0.6501  loss_db: 0.1644
2023/02/24 06:02:27 - mmengine - INFO - Epoch(train)   [11][20/22]  lr: 6.9474e-03  eta: 3 days, 16:36:23  time: 4.4944  data_time: 0.0463  memory: 6712  loss: 1.8030  loss_prob: 0.9974  loss_thr: 0.6439  loss_db: 0.1618
2023/02/24 06:02:35 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:05:43 - mmengine - INFO - Epoch(train)   [12][ 5/22]  lr: 6.9422e-03  eta: 3 days, 19:50:54  time: 21.0802  data_time: 6.7792  memory: 6712  loss: 1.7311  loss_prob: 0.9384  loss_thr: 0.6339  loss_db: 0.1588
2023/02/24 06:06:16 - mmengine - INFO - Epoch(train)   [12][10/22]  lr: 6.9422e-03  eta: 3 days, 18:57:51  time: 22.1269  data_time: 6.7959  memory: 6712  loss: 1.7188  loss_prob: 0.9327  loss_thr: 0.6281  loss_db: 0.1580
2023/02/24 06:06:38 - mmengine - INFO - Epoch(train)   [12][15/22]  lr: 6.9422e-03  eta: 3 days, 17:47:34  time: 5.4922  data_time: 0.0768  memory: 6712  loss: 1.7922  loss_prob: 0.9895  loss_thr: 0.6431  loss_db: 0.1596
2023/02/24 06:06:59 - mmengine - INFO - Epoch(train)   [12][20/22]  lr: 6.9422e-03  eta: 3 days, 16:38:54  time: 4.2930  data_time: 0.0734  memory: 6712  loss: 1.8091  loss_prob: 1.0073  loss_thr: 0.6390  loss_db: 0.1628
2023/02/24 06:07:07 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:10:14 - mmengine - INFO - Epoch(train)   [13][ 5/22]  lr: 6.9369e-03  eta: 3 days, 19:34:46  time: 20.8475  data_time: 6.4862  memory: 6712  loss: 1.7225  loss_prob: 0.9462  loss_thr: 0.6158  loss_db: 0.1605
2023/02/24 06:10:45 - mmengine - INFO - Epoch(train)   [13][10/22]  lr: 6.9369e-03  eta: 3 days, 18:42:55  time: 21.8411  data_time: 6.5244  memory: 6712  loss: 1.6861  loss_prob: 0.9208  loss_thr: 0.6085  loss_db: 0.1568
2023/02/24 06:11:08 - mmengine - INFO - Epoch(train)   [13][15/22]  lr: 6.9369e-03  eta: 3 days, 17:39:18  time: 5.3518  data_time: 0.0755  memory: 6712  loss: 1.6869  loss_prob: 0.9212  loss_thr: 0.6091  loss_db: 0.1566
2023/02/24 06:11:29 - mmengine - INFO - Epoch(train)   [13][20/22]  lr: 6.9369e-03  eta: 3 days, 16:36:44  time: 4.4030  data_time: 0.0427  memory: 6712  loss: 1.6707  loss_prob: 0.9171  loss_thr: 0.5988  loss_db: 0.1549
2023/02/24 06:11:39 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:14:33 - mmengine - INFO - Epoch(train)   [14][ 5/22]  lr: 6.9317e-03  eta: 3 days, 19:01:21  time: 19.7550  data_time: 6.6183  memory: 6712  loss: 1.7619  loss_prob: 1.0020  loss_thr: 0.6010  loss_db: 0.1589
2023/02/24 06:15:10 - mmengine - INFO - Epoch(train)   [14][10/22]  lr: 6.9317e-03  eta: 3 days, 18:23:36  time: 21.1018  data_time: 6.6633  memory: 6712  loss: 1.7161  loss_prob: 0.9654  loss_thr: 0.5944  loss_db: 0.1563
2023/02/24 06:15:32 - mmengine - INFO - Epoch(train)   [14][15/22]  lr: 6.9317e-03  eta: 3 days, 17:22:58  time: 5.8873  data_time: 0.0648  memory: 6712  loss: 1.7192  loss_prob: 0.9679  loss_thr: 0.5954  loss_db: 0.1559
2023/02/24 06:15:54 - mmengine - INFO - Epoch(train)   [14][20/22]  lr: 6.9317e-03  eta: 3 days, 16:25:59  time: 4.3364  data_time: 0.0274  memory: 6712  loss: 1.6298  loss_prob: 0.8869  loss_thr: 0.5926  loss_db: 0.1503
2023/02/24 06:16:02 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:19:00 - mmengine - INFO - Epoch(train)   [15][ 5/22]  lr: 6.9264e-03  eta: 3 days, 18:44:04  time: 19.8166  data_time: 6.2719  memory: 6712  loss: 1.6233  loss_prob: 0.8843  loss_thr: 0.5895  loss_db: 0.1495
2023/02/24 06:19:35 - mmengine - INFO - Epoch(train)   [15][10/22]  lr: 6.9264e-03  eta: 3 days, 18:05:44  time: 21.3018  data_time: 6.3262  memory: 6712  loss: 1.6084  loss_prob: 0.8760  loss_thr: 0.5845  loss_db: 0.1478
2023/02/24 06:19:56 - mmengine - INFO - Epoch(train)   [15][15/22]  lr: 6.9264e-03  eta: 3 days, 17:09:18  time: 5.6332  data_time: 0.0798  memory: 6712  loss: 1.5740  loss_prob: 0.8612  loss_thr: 0.5668  loss_db: 0.1460
2023/02/24 06:20:17 - mmengine - INFO - Epoch(train)   [15][20/22]  lr: 6.9264e-03  eta: 3 days, 16:14:55  time: 4.2267  data_time: 0.0394  memory: 6712  loss: 1.6627  loss_prob: 0.9368  loss_thr: 0.5743  loss_db: 0.1516
2023/02/24 06:20:27 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:23:29 - mmengine - INFO - Epoch(train)   [16][ 5/22]  lr: 6.9211e-03  eta: 3 days, 18:31:35  time: 20.4682  data_time: 6.4376  memory: 6712  loss: 1.6751  loss_prob: 0.9439  loss_thr: 0.5791  loss_db: 0.1521
2023/02/24 06:24:03 - mmengine - INFO - Epoch(train)   [16][10/22]  lr: 6.9211e-03  eta: 3 days, 17:53:41  time: 21.5603  data_time: 6.4834  memory: 6712  loss: 1.5881  loss_prob: 0.8699  loss_thr: 0.5714  loss_db: 0.1468
2023/02/24 06:24:24 - mmengine - INFO - Epoch(train)   [16][15/22]  lr: 6.9211e-03  eta: 3 days, 17:01:54  time: 5.5439  data_time: 0.0674  memory: 6712  loss: 1.5751  loss_prob: 0.8581  loss_thr: 0.5713  loss_db: 0.1457
2023/02/24 06:24:46 - mmengine - INFO - Epoch(train)   [16][20/22]  lr: 6.9211e-03  eta: 3 days, 16:11:19  time: 4.3338  data_time: 0.0365  memory: 6712  loss: 1.6895  loss_prob: 0.9474  loss_thr: 0.5892  loss_db: 0.1528
2023/02/24 06:24:54 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:27:53 - mmengine - INFO - Epoch(train)   [17][ 5/22]  lr: 6.9159e-03  eta: 3 days, 18:13:54  time: 20.1179  data_time: 7.1602  memory: 6712  loss: 1.5890  loss_prob: 0.8658  loss_thr: 0.5758  loss_db: 0.1473
2023/02/24 06:28:29 - mmengine - INFO - Epoch(train)   [17][10/22]  lr: 6.9159e-03  eta: 3 days, 17:40:34  time: 21.5151  data_time: 7.1956  memory: 6712  loss: 1.5827  loss_prob: 0.8728  loss_thr: 0.5623  loss_db: 0.1476
2023/02/24 06:28:52 - mmengine - INFO - Epoch(train)   [17][15/22]  lr: 6.9159e-03  eta: 3 days, 16:53:08  time: 5.8176  data_time: 0.0500  memory: 6712  loss: 1.5498  loss_prob: 0.8583  loss_thr: 0.5468  loss_db: 0.1447
2023/02/24 06:29:14 - mmengine - INFO - Epoch(train)   [17][20/22]  lr: 6.9159e-03  eta: 3 days, 16:06:35  time: 4.5159  data_time: 0.0371  memory: 6712  loss: 1.5092  loss_prob: 0.8323  loss_thr: 0.5363  loss_db: 0.1406
2023/02/24 06:29:21 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:32:11 - mmengine - INFO - Epoch(train)   [18][ 5/22]  lr: 6.9106e-03  eta: 3 days, 17:49:46  time: 19.0947  data_time: 6.1514  memory: 6712  loss: 1.6499  loss_prob: 0.9514  loss_thr: 0.5495  loss_db: 0.1489
2023/02/24 06:32:41 - mmengine - INFO - Epoch(train)   [18][10/22]  lr: 6.9106e-03  eta: 3 days, 17:13:04  time: 19.9988  data_time: 6.1911  memory: 6712  loss: 1.5199  loss_prob: 0.8403  loss_thr: 0.5375  loss_db: 0.1421
2023/02/24 06:33:02 - mmengine - INFO - Epoch(train)   [18][15/22]  lr: 6.9106e-03  eta: 3 days, 16:26:56  time: 5.1812  data_time: 0.0669  memory: 6712  loss: 1.6338  loss_prob: 0.9296  loss_thr: 0.5540  loss_db: 0.1502
2023/02/24 06:33:23 - mmengine - INFO - Epoch(train)   [18][20/22]  lr: 6.9106e-03  eta: 3 days, 15:41:20  time: 4.1944  data_time: 0.0443  memory: 6712  loss: 1.6014  loss_prob: 0.9109  loss_thr: 0.5433  loss_db: 0.1472
2023/02/24 06:33:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:36:13 - mmengine - INFO - Epoch(train)   [19][ 5/22]  lr: 6.9054e-03  eta: 3 days, 17:11:46  time: 18.3289  data_time: 6.0725  memory: 6712  loss: 1.5865  loss_prob: 0.9040  loss_thr: 0.5374  loss_db: 0.1451
2023/02/24 06:36:44 - mmengine - INFO - Epoch(train)   [19][10/22]  lr: 6.9054e-03  eta: 3 days, 16:38:02  time: 19.4111  data_time: 6.1041  memory: 6712  loss: 1.5683  loss_prob: 0.8961  loss_thr: 0.5286  loss_db: 0.1436
2023/02/24 06:37:03 - mmengine - INFO - Epoch(train)   [19][15/22]  lr: 6.9054e-03  eta: 3 days, 15:52:19  time: 5.0075  data_time: 0.0461  memory: 6712  loss: 1.4666  loss_prob: 0.8143  loss_thr: 0.5145  loss_db: 0.1378
2023/02/24 06:37:22 - mmengine - INFO - Epoch(train)   [19][20/22]  lr: 6.9054e-03  eta: 3 days, 15:07:51  time: 3.8092  data_time: 0.0239  memory: 6712  loss: 1.4776  loss_prob: 0.8202  loss_thr: 0.5185  loss_db: 0.1389
2023/02/24 06:37:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:40:10 - mmengine - INFO - Epoch(train)   [20][ 5/22]  lr: 6.9001e-03  eta: 3 days, 16:31:37  time: 18.0048  data_time: 5.7458  memory: 6712  loss: 1.5888  loss_prob: 0.9128  loss_thr: 0.5328  loss_db: 0.1432
2023/02/24 06:40:37 - mmengine - INFO - Epoch(train)   [20][10/22]  lr: 6.9001e-03  eta: 3 days, 15:56:20  time: 18.7845  data_time: 5.7862  memory: 6712  loss: 1.6013  loss_prob: 0.9205  loss_thr: 0.5363  loss_db: 0.1445
2023/02/24 06:40:58 - mmengine - INFO - Epoch(train)   [20][15/22]  lr: 6.9001e-03  eta: 3 days, 15:14:41  time: 4.7755  data_time: 0.0685  memory: 6712  loss: 1.4801  loss_prob: 0.8185  loss_thr: 0.5228  loss_db: 0.1389
2023/02/24 06:41:17 - mmengine - INFO - Epoch(train)   [20][20/22]  lr: 6.9001e-03  eta: 3 days, 14:32:56  time: 3.9535  data_time: 0.0450  memory: 6712  loss: 1.4580  loss_prob: 0.8092  loss_thr: 0.5116  loss_db: 0.1372
2023/02/24 06:41:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:41:23 - mmengine - INFO - Saving checkpoint at 20 epochs
2023/02/24 06:43:59 - mmengine - INFO - Epoch(val)   [20][ 5/88]    eta: 0:42:55  time: 31.0259  data_time: 0.0756  memory: 8651