Spaces:
Build error
Build error
File size: 47,370 Bytes
f8610ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
2023/02/24 05:13:32 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
CUDA available: True
numpy_random_seed: 1569491978
GPU 0: Tesla T4
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.6, V11.6.124
GCC: x86_64-linux-gnu-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.13.1+cu116
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.6
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.3.2 (built against CUDA 11.5)
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.14.1+cu116
OpenCV: 4.6.0
MMEngine: 0.5.0
Runtime environment:
cudnn_benchmark: True
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
dist_cfg: {'backend': 'nccl'}
seed: None
Distributed launcher: none
Distributed training: False
GPU number: 1
------------------------------------------------------------
2023/02/24 05:13:33 - mmengine - INFO - Config:
file_client_args = dict(backend='disk')
model = dict(
type='DBNet',
backbone=dict(
type='mmdet.ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe'),
neck=dict(
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
det_head=dict(
type='DBHead',
in_channels=256,
module_loss=dict(type='DBModuleLoss'),
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
data_preprocessor=dict(
type='TextDetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=0.12549019607843137,
saturation=0.5),
dict(
type='ImgAugWrapper',
args=[['Fliplr', 0.5], {
'cls': 'Affine',
'rotate': [-10, 10]
}, ['Resize', [0.5, 3.0]]]),
dict(type='RandomCrop', min_side_ratio=0.1),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='Pad', size=(640, 640)),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape'))
]
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
icdar2015_textdet_data_root = 'data/det/textdet-thvote'
icdar2015_textdet_train = dict(
type='OCRDataset',
data_root='data/det/textdet-thvote',
ann_file='textdet_train.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=[
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=0.12549019607843137,
saturation=0.5),
dict(
type='ImgAugWrapper',
args=[['Fliplr', 0.5], {
'cls': 'Affine',
'rotate': [-10, 10]
}, ['Resize', [0.5, 3.0]]]),
dict(type='RandomCrop', min_side_ratio=0.1),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='Pad', size=(640, 640)),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape'))
])
icdar2015_textdet_test = dict(
type='OCRDataset',
data_root='data/det/textdet-thvote',
ann_file='textdet_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=[
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
])
default_scope = 'mmocr'
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
randomness = dict(seed=None)
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=5),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=20),
sampler_seed=dict(type='DistSamplerSeedHook'),
sync_buffer=dict(type='SyncBuffersHook'),
visualization=dict(
type='VisualizationHook',
interval=1,
enable=False,
show=False,
draw_gt=False,
draw_pred=False))
log_level = 'INFO'
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
load_from = None
resume = False
val_evaluator = dict(type='HmeanIOUMetric')
test_evaluator = dict(type='HmeanIOUMetric')
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='TextDetLocalVisualizer',
name='visualizer',
vis_backends=[dict(type='LocalVisBackend')])
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)]
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='OCRDataset',
data_root='data/det/textdet-thvote',
ann_file='textdet_train.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=[
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=0.12549019607843137,
saturation=0.5),
dict(
type='ImgAugWrapper',
args=[['Fliplr', 0.5], {
'cls': 'Affine',
'rotate': [-10, 10]
}, ['Resize', [0.5, 3.0]]]),
dict(type='RandomCrop', min_side_ratio=0.1),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='Pad', size=(640, 640)),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape'))
]))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='OCRDataset',
data_root='data/det/textdet-thvote',
ann_file='textdet_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=[
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]))
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='OCRDataset',
data_root='data/det/textdet-thvote',
ann_file='textdet_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=[
dict(
type='LoadImageFromFile',
file_client_args=dict(backend='disk'),
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]))
auto_scale_lr = dict(base_batch_size=16)
launcher = 'none'
work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015'
2023/02/24 05:13:33 - mmengine - WARNING - The "visualizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:33 - mmengine - WARNING - The "vis_backend" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:34 - mmengine - WARNING - The "model" registry in mmdet did not set import location. Fallback to call `mmdet.utils.register_all_modules` instead.
2023/02/24 05:13:38 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
2023/02/24 05:13:38 - mmengine - WARNING - The "hook" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:38 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) VisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) VisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
2023/02/24 05:13:39 - mmengine - WARNING - The "loop" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "dataset" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "transform" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "data sampler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer constructor" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "optimizer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "optim wrapper" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:39 - mmengine - WARNING - The "parameter scheduler" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:40 - mmengine - WARNING - The "metric" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:40 - mmengine - WARNING - The "weight initializer" registry in mmocr did not set import location. Fallback to call `mmocr.utils.register_all_modules` instead.
2023/02/24 05:13:40 - mmengine - INFO - load model from: torchvision://resnet18
2023/02/24 05:13:40 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet18
2023/02/24 05:13:40 - mmengine - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
Name of parameter - Initialization information
backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
PretrainedInit: load from torchvision://resnet18
backbone.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.0.conv1.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.0.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.0.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.0.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.0.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.1.conv1.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.1.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.1.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.1.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer1.1.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.conv1.weight - torch.Size([128, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.downsample.0.weight - torch.Size([128, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.downsample.1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.0.downsample.1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.1.conv1.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.1.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.1.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.1.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer2.1.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.conv1.weight - torch.Size([256, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.downsample.0.weight - torch.Size([256, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.downsample.1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.0.downsample.1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.1.conv1.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.1.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.1.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.1.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer3.1.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.conv1.weight - torch.Size([512, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.downsample.1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.0.downsample.1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.1.conv1.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.1.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.1.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.1.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
backbone.layer4.1.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet18
neck.lateral_convs.0.conv.weight - torch.Size([256, 64, 1, 1]):
Initialized by user-defined `init_weights` in ConvModule
neck.lateral_convs.1.conv.weight - torch.Size([256, 128, 1, 1]):
Initialized by user-defined `init_weights` in ConvModule
neck.lateral_convs.2.conv.weight - torch.Size([256, 256, 1, 1]):
Initialized by user-defined `init_weights` in ConvModule
neck.lateral_convs.3.conv.weight - torch.Size([256, 512, 1, 1]):
Initialized by user-defined `init_weights` in ConvModule
neck.smooth_convs.0.conv.weight - torch.Size([64, 256, 3, 3]):
Initialized by user-defined `init_weights` in ConvModule
neck.smooth_convs.1.conv.weight - torch.Size([64, 256, 3, 3]):
Initialized by user-defined `init_weights` in ConvModule
neck.smooth_convs.2.conv.weight - torch.Size([64, 256, 3, 3]):
Initialized by user-defined `init_weights` in ConvModule
neck.smooth_convs.3.conv.weight - torch.Size([64, 256, 3, 3]):
Initialized by user-defined `init_weights` in ConvModule
det_head.binarize.0.weight - torch.Size([64, 256, 3, 3]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.3.weight - torch.Size([64, 64, 2, 2]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.3.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.4.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.4.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.6.weight - torch.Size([64, 1, 2, 2]):
The value is the same before and after calling `init_weights` of DBNet
det_head.binarize.6.bias - torch.Size([1]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.0.weight - torch.Size([64, 256, 3, 3]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.3.weight - torch.Size([64, 64, 2, 2]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.3.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.4.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.4.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.6.weight - torch.Size([64, 1, 2, 2]):
The value is the same before and after calling `init_weights` of DBNet
det_head.threshold.6.bias - torch.Size([1]):
The value is the same before and after calling `init_weights` of DBNet
2023/02/24 05:13:40 - mmengine - INFO - Checkpoints will be saved to /content/mmocr/work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015.
2023/02/24 05:16:48 - mmengine - INFO - Epoch(train) [1][ 5/22] lr: 7.0000e-03 eta: 11 days, 10:56:37 time: 37.4994 data_time: 13.3666 memory: 12058 loss: 10.5798 loss_prob: 7.3334 loss_thr: 2.3504 loss_db: 0.8960
2023/02/24 05:17:25 - mmengine - INFO - Epoch(train) [1][10/22] lr: 7.0000e-03 eta: 6 days, 20:37:40 time: 22.4578 data_time: 6.7581 memory: 6713 loss: 8.0422 loss_prob: 5.2998 loss_thr: 1.8354 loss_db: 0.9071
2023/02/24 05:17:49 - mmengine - INFO - Epoch(train) [1][15/22] lr: 7.0000e-03 eta: 5 days, 1:36:06 time: 6.1375 data_time: 0.0814 memory: 6713 loss: 5.2709 loss_prob: 3.0675 loss_thr: 1.2472 loss_db: 0.9562
2023/02/24 05:18:13 - mmengine - INFO - Epoch(train) [1][20/22] lr: 7.0000e-03 eta: 4 days, 3:52:43 time: 4.8026 data_time: 0.0312 memory: 6713 loss: 4.9844 loss_prob: 2.8490 loss_thr: 1.1389 loss_db: 0.9965
2023/02/24 05:18:25 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:21:34 - mmengine - INFO - Epoch(train) [2][ 5/22] lr: 6.9947e-03 eta: 5 days, 8:31:25 time: 21.5618 data_time: 7.1003 memory: 11447 loss: 4.8425 loss_prob: 2.8106 loss_thr: 1.0607 loss_db: 0.9712
2023/02/24 05:22:09 - mmengine - INFO - Epoch(train) [2][10/22] lr: 6.9947e-03 eta: 4 days, 20:24:29 time: 22.4338 data_time: 7.1646 memory: 6712 loss: 4.7001 loss_prob: 2.7874 loss_thr: 1.1015 loss_db: 0.8112
2023/02/24 05:22:33 - mmengine - INFO - Epoch(train) [2][15/22] lr: 6.9947e-03 eta: 4 days, 9:30:51 time: 5.9429 data_time: 0.0877 memory: 6712 loss: 4.4307 loss_prob: 2.7478 loss_thr: 1.1405 loss_db: 0.5424
2023/02/24 05:22:56 - mmengine - INFO - Epoch(train) [2][20/22] lr: 6.9947e-03 eta: 4 days, 0:51:26 time: 4.7033 data_time: 0.0489 memory: 6712 loss: 4.1205 loss_prob: 2.6747 loss_thr: 1.0579 loss_db: 0.3879
2023/02/24 05:23:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:25:58 - mmengine - INFO - Epoch(train) [3][ 5/22] lr: 6.9895e-03 eta: 4 days, 14:13:27 time: 19.7292 data_time: 6.3200 memory: 6712 loss: 3.7028 loss_prob: 2.4246 loss_thr: 0.9721 loss_db: 0.3061
2023/02/24 05:26:33 - mmengine - INFO - Epoch(train) [3][10/22] lr: 6.9895e-03 eta: 4 days, 8:44:41 time: 20.8299 data_time: 6.3501 memory: 6712 loss: 3.4052 loss_prob: 2.1909 loss_thr: 0.9435 loss_db: 0.2709
2023/02/24 05:26:53 - mmengine - INFO - Epoch(train) [3][15/22] lr: 6.9895e-03 eta: 4 days, 2:14:03 time: 5.4242 data_time: 0.0758 memory: 6712 loss: 3.1914 loss_prob: 2.0126 loss_thr: 0.9125 loss_db: 0.2664
2023/02/24 05:27:15 - mmengine - INFO - Epoch(train) [3][20/22] lr: 6.9895e-03 eta: 3 days, 21:04:03 time: 4.1317 data_time: 0.0486 memory: 6712 loss: 2.9899 loss_prob: 1.8336 loss_thr: 0.8950 loss_db: 0.2613
2023/02/24 05:27:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:30:21 - mmengine - INFO - Epoch(train) [4][ 5/22] lr: 6.9842e-03 eta: 4 days, 7:06:23 time: 19.9728 data_time: 6.5625 memory: 6712 loss: 2.7135 loss_prob: 1.6040 loss_thr: 0.8757 loss_db: 0.2338
2023/02/24 05:30:55 - mmengine - INFO - Epoch(train) [4][10/22] lr: 6.9842e-03 eta: 4 days, 3:31:24 time: 21.1335 data_time: 6.5916 memory: 6712 loss: 2.5669 loss_prob: 1.4807 loss_thr: 0.8647 loss_db: 0.2215
2023/02/24 05:31:16 - mmengine - INFO - Epoch(train) [4][15/22] lr: 6.9842e-03 eta: 3 days, 23:16:49 time: 5.4703 data_time: 0.0655 memory: 6712 loss: 2.5318 loss_prob: 1.4490 loss_thr: 0.8641 loss_db: 0.2187
2023/02/24 05:31:37 - mmengine - INFO - Epoch(train) [4][20/22] lr: 6.9842e-03 eta: 3 days, 19:28:30 time: 4.1855 data_time: 0.0463 memory: 6712 loss: 2.4536 loss_prob: 1.3779 loss_thr: 0.8595 loss_db: 0.2161
2023/02/24 05:31:43 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:34:41 - mmengine - INFO - Epoch(train) [5][ 5/22] lr: 6.9790e-03 eta: 4 days, 3:03:02 time: 19.6819 data_time: 6.5648 memory: 6712 loss: 2.2837 loss_prob: 1.2531 loss_thr: 0.8280 loss_db: 0.2027
2023/02/24 05:35:13 - mmengine - INFO - Epoch(train) [5][10/22] lr: 6.9790e-03 eta: 4 days, 0:23:14 time: 20.9855 data_time: 6.6279 memory: 6712 loss: 2.2122 loss_prob: 1.1990 loss_thr: 0.8168 loss_db: 0.1964
2023/02/24 05:35:36 - mmengine - INFO - Epoch(train) [5][15/22] lr: 6.9790e-03 eta: 3 days, 21:16:29 time: 5.4636 data_time: 0.0946 memory: 6712 loss: 2.1482 loss_prob: 1.1455 loss_thr: 0.8120 loss_db: 0.1906
2023/02/24 05:35:57 - mmengine - INFO - Epoch(train) [5][20/22] lr: 6.9790e-03 eta: 3 days, 18:24:00 time: 4.3929 data_time: 0.0363 memory: 6712 loss: 2.2215 loss_prob: 1.2052 loss_thr: 0.8195 loss_db: 0.1968
2023/02/24 05:36:05 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:39:01 - mmengine - INFO - Epoch(train) [6][ 5/22] lr: 6.9737e-03 eta: 4 days, 0:33:26 time: 19.8343 data_time: 6.6865 memory: 6712 loss: 2.2092 loss_prob: 1.1873 loss_thr: 0.8270 loss_db: 0.1949
2023/02/24 05:39:35 - mmengine - INFO - Epoch(train) [6][10/22] lr: 6.9737e-03 eta: 3 days, 22:34:41 time: 21.0220 data_time: 6.7316 memory: 6712 loss: 2.0882 loss_prob: 1.0934 loss_thr: 0.8093 loss_db: 0.1856
2023/02/24 05:39:55 - mmengine - INFO - Epoch(train) [6][15/22] lr: 6.9737e-03 eta: 3 days, 19:56:56 time: 5.3949 data_time: 0.0639 memory: 6712 loss: 2.0953 loss_prob: 1.1014 loss_thr: 0.8072 loss_db: 0.1867
2023/02/24 05:40:15 - mmengine - INFO - Epoch(train) [6][20/22] lr: 6.9737e-03 eta: 3 days, 17:30:13 time: 3.9802 data_time: 0.0307 memory: 6712 loss: 2.1803 loss_prob: 1.1807 loss_thr: 0.8064 loss_db: 0.1932
2023/02/24 05:40:24 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:43:18 - mmengine - INFO - Epoch(train) [7][ 5/22] lr: 6.9685e-03 eta: 3 days, 22:38:09 time: 19.3378 data_time: 6.0656 memory: 6712 loss: 2.1125 loss_prob: 1.1454 loss_thr: 0.7801 loss_db: 0.1870
2023/02/24 05:43:52 - mmengine - INFO - Epoch(train) [7][10/22] lr: 6.9685e-03 eta: 3 days, 21:03:26 time: 20.8409 data_time: 6.1127 memory: 6712 loss: 2.1082 loss_prob: 1.1444 loss_thr: 0.7752 loss_db: 0.1886
2023/02/24 05:44:14 - mmengine - INFO - Epoch(train) [7][15/22] lr: 6.9685e-03 eta: 3 days, 18:57:55 time: 5.6460 data_time: 0.0896 memory: 6712 loss: 2.0828 loss_prob: 1.1309 loss_thr: 0.7652 loss_db: 0.1867
2023/02/24 05:44:35 - mmengine - INFO - Epoch(train) [7][20/22] lr: 6.9685e-03 eta: 3 days, 16:56:45 time: 4.2613 data_time: 0.0588 memory: 6712 loss: 1.9454 loss_prob: 1.0347 loss_thr: 0.7355 loss_db: 0.1752
2023/02/24 05:44:42 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:47:42 - mmengine - INFO - Epoch(train) [8][ 5/22] lr: 6.9632e-03 eta: 3 days, 21:35:37 time: 20.0738 data_time: 7.0659 memory: 6712 loss: 1.9103 loss_prob: 1.0182 loss_thr: 0.7198 loss_db: 0.1723
2023/02/24 05:48:18 - mmengine - INFO - Epoch(train) [8][10/22] lr: 6.9632e-03 eta: 3 days, 20:19:25 time: 21.6464 data_time: 7.0947 memory: 6712 loss: 1.9593 loss_prob: 1.0665 loss_thr: 0.7176 loss_db: 0.1751
2023/02/24 05:48:41 - mmengine - INFO - Epoch(train) [8][15/22] lr: 6.9632e-03 eta: 3 days, 18:33:12 time: 5.8713 data_time: 0.0769 memory: 6712 loss: 1.9544 loss_prob: 1.0733 loss_thr: 0.7049 loss_db: 0.1762
2023/02/24 05:49:01 - mmengine - INFO - Epoch(train) [8][20/22] lr: 6.9632e-03 eta: 3 days, 16:48:01 time: 4.3373 data_time: 0.0467 memory: 6712 loss: 1.8306 loss_prob: 0.9863 loss_thr: 0.6770 loss_db: 0.1673
2023/02/24 05:49:08 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:52:08 - mmengine - INFO - Epoch(train) [9][ 5/22] lr: 6.9580e-03 eta: 3 days, 20:51:50 time: 20.0004 data_time: 6.3228 memory: 6712 loss: 1.9089 loss_prob: 1.0586 loss_thr: 0.6772 loss_db: 0.1731
2023/02/24 05:52:41 - mmengine - INFO - Epoch(train) [9][10/22] lr: 6.9580e-03 eta: 3 days, 19:38:00 time: 21.3337 data_time: 6.3790 memory: 6712 loss: 1.8955 loss_prob: 1.0480 loss_thr: 0.6761 loss_db: 0.1714
2023/02/24 05:53:02 - mmengine - INFO - Epoch(train) [9][15/22] lr: 6.9580e-03 eta: 3 days, 17:59:55 time: 5.3263 data_time: 0.0722 memory: 6712 loss: 1.7788 loss_prob: 0.9520 loss_thr: 0.6654 loss_db: 0.1614
2023/02/24 05:53:21 - mmengine - INFO - Epoch(train) [9][20/22] lr: 6.9580e-03 eta: 3 days, 16:25:34 time: 4.0420 data_time: 0.0361 memory: 6712 loss: 1.8003 loss_prob: 0.9682 loss_thr: 0.6678 loss_db: 0.1643
2023/02/24 05:53:31 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 05:56:27 - mmengine - INFO - Epoch(train) [10][ 5/22] lr: 6.9527e-03 eta: 3 days, 20:00:04 time: 19.6905 data_time: 6.3250 memory: 6712 loss: 1.8357 loss_prob: 0.9859 loss_thr: 0.6834 loss_db: 0.1663
2023/02/24 05:57:04 - mmengine - INFO - Epoch(train) [10][10/22] lr: 6.9527e-03 eta: 3 days, 19:04:40 time: 21.3082 data_time: 6.3498 memory: 6712 loss: 1.8376 loss_prob: 0.9889 loss_thr: 0.6809 loss_db: 0.1677
2023/02/24 05:57:27 - mmengine - INFO - Epoch(train) [10][15/22] lr: 6.9527e-03 eta: 3 days, 17:43:00 time: 6.0559 data_time: 0.0570 memory: 6712 loss: 1.7998 loss_prob: 0.9688 loss_thr: 0.6660 loss_db: 0.1651
2023/02/24 05:57:48 - mmengine - INFO - Epoch(train) [10][20/22] lr: 6.9527e-03 eta: 3 days, 16:20:24 time: 4.4162 data_time: 0.0306 memory: 6712 loss: 1.8812 loss_prob: 1.0357 loss_thr: 0.6779 loss_db: 0.1676
2023/02/24 05:57:55 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:01:01 - mmengine - INFO - Epoch(train) [11][ 5/22] lr: 6.9474e-03 eta: 3 days, 19:46:57 time: 20.5701 data_time: 7.2858 memory: 6712 loss: 1.8385 loss_prob: 1.0164 loss_thr: 0.6580 loss_db: 0.1641
2023/02/24 06:01:42 - mmengine - INFO - Epoch(train) [11][10/22] lr: 6.9474e-03 eta: 3 days, 19:04:25 time: 22.6877 data_time: 7.3177 memory: 6712 loss: 1.7372 loss_prob: 0.9383 loss_thr: 0.6403 loss_db: 0.1586
2023/02/24 06:02:04 - mmengine - INFO - Epoch(train) [11][15/22] lr: 6.9474e-03 eta: 3 days, 17:48:05 time: 6.3309 data_time: 0.0664 memory: 6712 loss: 1.8261 loss_prob: 1.0116 loss_thr: 0.6501 loss_db: 0.1644
2023/02/24 06:02:27 - mmengine - INFO - Epoch(train) [11][20/22] lr: 6.9474e-03 eta: 3 days, 16:36:23 time: 4.4944 data_time: 0.0463 memory: 6712 loss: 1.8030 loss_prob: 0.9974 loss_thr: 0.6439 loss_db: 0.1618
2023/02/24 06:02:35 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:05:43 - mmengine - INFO - Epoch(train) [12][ 5/22] lr: 6.9422e-03 eta: 3 days, 19:50:54 time: 21.0802 data_time: 6.7792 memory: 6712 loss: 1.7311 loss_prob: 0.9384 loss_thr: 0.6339 loss_db: 0.1588
2023/02/24 06:06:16 - mmengine - INFO - Epoch(train) [12][10/22] lr: 6.9422e-03 eta: 3 days, 18:57:51 time: 22.1269 data_time: 6.7959 memory: 6712 loss: 1.7188 loss_prob: 0.9327 loss_thr: 0.6281 loss_db: 0.1580
2023/02/24 06:06:38 - mmengine - INFO - Epoch(train) [12][15/22] lr: 6.9422e-03 eta: 3 days, 17:47:34 time: 5.4922 data_time: 0.0768 memory: 6712 loss: 1.7922 loss_prob: 0.9895 loss_thr: 0.6431 loss_db: 0.1596
2023/02/24 06:06:59 - mmengine - INFO - Epoch(train) [12][20/22] lr: 6.9422e-03 eta: 3 days, 16:38:54 time: 4.2930 data_time: 0.0734 memory: 6712 loss: 1.8091 loss_prob: 1.0073 loss_thr: 0.6390 loss_db: 0.1628
2023/02/24 06:07:07 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:10:14 - mmengine - INFO - Epoch(train) [13][ 5/22] lr: 6.9369e-03 eta: 3 days, 19:34:46 time: 20.8475 data_time: 6.4862 memory: 6712 loss: 1.7225 loss_prob: 0.9462 loss_thr: 0.6158 loss_db: 0.1605
2023/02/24 06:10:45 - mmengine - INFO - Epoch(train) [13][10/22] lr: 6.9369e-03 eta: 3 days, 18:42:55 time: 21.8411 data_time: 6.5244 memory: 6712 loss: 1.6861 loss_prob: 0.9208 loss_thr: 0.6085 loss_db: 0.1568
2023/02/24 06:11:08 - mmengine - INFO - Epoch(train) [13][15/22] lr: 6.9369e-03 eta: 3 days, 17:39:18 time: 5.3518 data_time: 0.0755 memory: 6712 loss: 1.6869 loss_prob: 0.9212 loss_thr: 0.6091 loss_db: 0.1566
2023/02/24 06:11:29 - mmengine - INFO - Epoch(train) [13][20/22] lr: 6.9369e-03 eta: 3 days, 16:36:44 time: 4.4030 data_time: 0.0427 memory: 6712 loss: 1.6707 loss_prob: 0.9171 loss_thr: 0.5988 loss_db: 0.1549
2023/02/24 06:11:39 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:14:33 - mmengine - INFO - Epoch(train) [14][ 5/22] lr: 6.9317e-03 eta: 3 days, 19:01:21 time: 19.7550 data_time: 6.6183 memory: 6712 loss: 1.7619 loss_prob: 1.0020 loss_thr: 0.6010 loss_db: 0.1589
2023/02/24 06:15:10 - mmengine - INFO - Epoch(train) [14][10/22] lr: 6.9317e-03 eta: 3 days, 18:23:36 time: 21.1018 data_time: 6.6633 memory: 6712 loss: 1.7161 loss_prob: 0.9654 loss_thr: 0.5944 loss_db: 0.1563
2023/02/24 06:15:32 - mmengine - INFO - Epoch(train) [14][15/22] lr: 6.9317e-03 eta: 3 days, 17:22:58 time: 5.8873 data_time: 0.0648 memory: 6712 loss: 1.7192 loss_prob: 0.9679 loss_thr: 0.5954 loss_db: 0.1559
2023/02/24 06:15:54 - mmengine - INFO - Epoch(train) [14][20/22] lr: 6.9317e-03 eta: 3 days, 16:25:59 time: 4.3364 data_time: 0.0274 memory: 6712 loss: 1.6298 loss_prob: 0.8869 loss_thr: 0.5926 loss_db: 0.1503
2023/02/24 06:16:02 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:19:00 - mmengine - INFO - Epoch(train) [15][ 5/22] lr: 6.9264e-03 eta: 3 days, 18:44:04 time: 19.8166 data_time: 6.2719 memory: 6712 loss: 1.6233 loss_prob: 0.8843 loss_thr: 0.5895 loss_db: 0.1495
2023/02/24 06:19:35 - mmengine - INFO - Epoch(train) [15][10/22] lr: 6.9264e-03 eta: 3 days, 18:05:44 time: 21.3018 data_time: 6.3262 memory: 6712 loss: 1.6084 loss_prob: 0.8760 loss_thr: 0.5845 loss_db: 0.1478
2023/02/24 06:19:56 - mmengine - INFO - Epoch(train) [15][15/22] lr: 6.9264e-03 eta: 3 days, 17:09:18 time: 5.6332 data_time: 0.0798 memory: 6712 loss: 1.5740 loss_prob: 0.8612 loss_thr: 0.5668 loss_db: 0.1460
2023/02/24 06:20:17 - mmengine - INFO - Epoch(train) [15][20/22] lr: 6.9264e-03 eta: 3 days, 16:14:55 time: 4.2267 data_time: 0.0394 memory: 6712 loss: 1.6627 loss_prob: 0.9368 loss_thr: 0.5743 loss_db: 0.1516
2023/02/24 06:20:27 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:23:29 - mmengine - INFO - Epoch(train) [16][ 5/22] lr: 6.9211e-03 eta: 3 days, 18:31:35 time: 20.4682 data_time: 6.4376 memory: 6712 loss: 1.6751 loss_prob: 0.9439 loss_thr: 0.5791 loss_db: 0.1521
2023/02/24 06:24:03 - mmengine - INFO - Epoch(train) [16][10/22] lr: 6.9211e-03 eta: 3 days, 17:53:41 time: 21.5603 data_time: 6.4834 memory: 6712 loss: 1.5881 loss_prob: 0.8699 loss_thr: 0.5714 loss_db: 0.1468
2023/02/24 06:24:24 - mmengine - INFO - Epoch(train) [16][15/22] lr: 6.9211e-03 eta: 3 days, 17:01:54 time: 5.5439 data_time: 0.0674 memory: 6712 loss: 1.5751 loss_prob: 0.8581 loss_thr: 0.5713 loss_db: 0.1457
2023/02/24 06:24:46 - mmengine - INFO - Epoch(train) [16][20/22] lr: 6.9211e-03 eta: 3 days, 16:11:19 time: 4.3338 data_time: 0.0365 memory: 6712 loss: 1.6895 loss_prob: 0.9474 loss_thr: 0.5892 loss_db: 0.1528
2023/02/24 06:24:54 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:27:53 - mmengine - INFO - Epoch(train) [17][ 5/22] lr: 6.9159e-03 eta: 3 days, 18:13:54 time: 20.1179 data_time: 7.1602 memory: 6712 loss: 1.5890 loss_prob: 0.8658 loss_thr: 0.5758 loss_db: 0.1473
2023/02/24 06:28:29 - mmengine - INFO - Epoch(train) [17][10/22] lr: 6.9159e-03 eta: 3 days, 17:40:34 time: 21.5151 data_time: 7.1956 memory: 6712 loss: 1.5827 loss_prob: 0.8728 loss_thr: 0.5623 loss_db: 0.1476
2023/02/24 06:28:52 - mmengine - INFO - Epoch(train) [17][15/22] lr: 6.9159e-03 eta: 3 days, 16:53:08 time: 5.8176 data_time: 0.0500 memory: 6712 loss: 1.5498 loss_prob: 0.8583 loss_thr: 0.5468 loss_db: 0.1447
2023/02/24 06:29:14 - mmengine - INFO - Epoch(train) [17][20/22] lr: 6.9159e-03 eta: 3 days, 16:06:35 time: 4.5159 data_time: 0.0371 memory: 6712 loss: 1.5092 loss_prob: 0.8323 loss_thr: 0.5363 loss_db: 0.1406
2023/02/24 06:29:21 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:32:11 - mmengine - INFO - Epoch(train) [18][ 5/22] lr: 6.9106e-03 eta: 3 days, 17:49:46 time: 19.0947 data_time: 6.1514 memory: 6712 loss: 1.6499 loss_prob: 0.9514 loss_thr: 0.5495 loss_db: 0.1489
2023/02/24 06:32:41 - mmengine - INFO - Epoch(train) [18][10/22] lr: 6.9106e-03 eta: 3 days, 17:13:04 time: 19.9988 data_time: 6.1911 memory: 6712 loss: 1.5199 loss_prob: 0.8403 loss_thr: 0.5375 loss_db: 0.1421
2023/02/24 06:33:02 - mmengine - INFO - Epoch(train) [18][15/22] lr: 6.9106e-03 eta: 3 days, 16:26:56 time: 5.1812 data_time: 0.0669 memory: 6712 loss: 1.6338 loss_prob: 0.9296 loss_thr: 0.5540 loss_db: 0.1502
2023/02/24 06:33:23 - mmengine - INFO - Epoch(train) [18][20/22] lr: 6.9106e-03 eta: 3 days, 15:41:20 time: 4.1944 data_time: 0.0443 memory: 6712 loss: 1.6014 loss_prob: 0.9109 loss_thr: 0.5433 loss_db: 0.1472
2023/02/24 06:33:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:36:13 - mmengine - INFO - Epoch(train) [19][ 5/22] lr: 6.9054e-03 eta: 3 days, 17:11:46 time: 18.3289 data_time: 6.0725 memory: 6712 loss: 1.5865 loss_prob: 0.9040 loss_thr: 0.5374 loss_db: 0.1451
2023/02/24 06:36:44 - mmengine - INFO - Epoch(train) [19][10/22] lr: 6.9054e-03 eta: 3 days, 16:38:02 time: 19.4111 data_time: 6.1041 memory: 6712 loss: 1.5683 loss_prob: 0.8961 loss_thr: 0.5286 loss_db: 0.1436
2023/02/24 06:37:03 - mmengine - INFO - Epoch(train) [19][15/22] lr: 6.9054e-03 eta: 3 days, 15:52:19 time: 5.0075 data_time: 0.0461 memory: 6712 loss: 1.4666 loss_prob: 0.8143 loss_thr: 0.5145 loss_db: 0.1378
2023/02/24 06:37:22 - mmengine - INFO - Epoch(train) [19][20/22] lr: 6.9054e-03 eta: 3 days, 15:07:51 time: 3.8092 data_time: 0.0239 memory: 6712 loss: 1.4776 loss_prob: 0.8202 loss_thr: 0.5185 loss_db: 0.1389
2023/02/24 06:37:30 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:40:10 - mmengine - INFO - Epoch(train) [20][ 5/22] lr: 6.9001e-03 eta: 3 days, 16:31:37 time: 18.0048 data_time: 5.7458 memory: 6712 loss: 1.5888 loss_prob: 0.9128 loss_thr: 0.5328 loss_db: 0.1432
2023/02/24 06:40:37 - mmengine - INFO - Epoch(train) [20][10/22] lr: 6.9001e-03 eta: 3 days, 15:56:20 time: 18.7845 data_time: 5.7862 memory: 6712 loss: 1.6013 loss_prob: 0.9205 loss_thr: 0.5363 loss_db: 0.1445
2023/02/24 06:40:58 - mmengine - INFO - Epoch(train) [20][15/22] lr: 6.9001e-03 eta: 3 days, 15:14:41 time: 4.7755 data_time: 0.0685 memory: 6712 loss: 1.4801 loss_prob: 0.8185 loss_thr: 0.5228 loss_db: 0.1389
2023/02/24 06:41:17 - mmengine - INFO - Epoch(train) [20][20/22] lr: 6.9001e-03 eta: 3 days, 14:32:56 time: 3.9535 data_time: 0.0450 memory: 6712 loss: 1.4580 loss_prob: 0.8092 loss_thr: 0.5116 loss_db: 0.1372
2023/02/24 06:41:23 - mmengine - INFO - Exp name: dbnet_resnet18_fpnc_1200e_icdar2015_20230224_051330
2023/02/24 06:41:23 - mmengine - INFO - Saving checkpoint at 20 epochs
2023/02/24 06:43:59 - mmengine - INFO - Epoch(val) [20][ 5/88] eta: 0:42:55 time: 31.0259 data_time: 0.0756 memory: 8651
|