Spaces:
Build error
Build error
file_client_args = dict(backend='disk') | |
model = dict( | |
type='DBNet', | |
backbone=dict( | |
type='mmdet.ResNet', | |
depth=18, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=-1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'), | |
norm_eval=False, | |
style='caffe'), | |
neck=dict( | |
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256), | |
det_head=dict( | |
type='DBHead', | |
in_channels=256, | |
module_loss=dict(type='DBModuleLoss'), | |
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')), | |
data_preprocessor=dict( | |
type='TextDetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32)) | |
train_pipeline = [ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='TorchVisionWrapper', | |
op='ColorJitter', | |
brightness=0.12549019607843137, | |
saturation=0.5), | |
dict( | |
type='ImgAugWrapper', | |
args=[['Fliplr', 0.5], { | |
'cls': 'Affine', | |
'rotate': [-10, 10] | |
}, ['Resize', [0.5, 3.0]]]), | |
dict(type='RandomCrop', min_side_ratio=0.1), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict(type='Pad', size=(640, 640)), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape')) | |
] | |
test_pipeline = [ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1333, 736), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
] | |
icdar2015_textdet_data_root = 'data/det/textdet-thvote' | |
icdar2015_textdet_train = dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_train.json', | |
data_prefix=dict(img_path='imgs/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='TorchVisionWrapper', | |
op='ColorJitter', | |
brightness=0.12549019607843137, | |
saturation=0.5), | |
dict( | |
type='ImgAugWrapper', | |
args=[['Fliplr', 0.5], { | |
'cls': 'Affine', | |
'rotate': [-10, 10] | |
}, ['Resize', [0.5, 3.0]]]), | |
dict(type='RandomCrop', min_side_ratio=0.1), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict(type='Pad', size=(640, 640)), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape')) | |
]) | |
icdar2015_textdet_test = dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_test.json', | |
data_prefix=dict(img_path='imgs/'), | |
test_mode=True, | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1333, 736), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
]) | |
default_scope = 'mmocr' | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
randomness = dict(seed=None) | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=5), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=20), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
sync_buffer=dict(type='SyncBuffersHook'), | |
visualization=dict( | |
type='VisualizationHook', | |
interval=1, | |
enable=False, | |
show=False, | |
draw_gt=False, | |
draw_pred=False)) | |
log_level = 'INFO' | |
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True) | |
load_from = None | |
resume = False | |
val_evaluator = dict(type='HmeanIOUMetric') | |
test_evaluator = dict(type='HmeanIOUMetric') | |
vis_backends = [dict(type='LocalVisBackend')] | |
visualizer = dict( | |
type='TextDetLocalVisualizer', | |
name='visualizer', | |
vis_backends=[dict(type='LocalVisBackend')]) | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001)) | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [dict(type='PolyLR', power=0.9, eta_min=1e-07, end=1200)] | |
train_dataloader = dict( | |
batch_size=16, | |
num_workers=8, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_train.json', | |
data_prefix=dict(img_path='imgs/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='TorchVisionWrapper', | |
op='ColorJitter', | |
brightness=0.12549019607843137, | |
saturation=0.5), | |
dict( | |
type='ImgAugWrapper', | |
args=[['Fliplr', 0.5], { | |
'cls': 'Affine', | |
'rotate': [-10, 10] | |
}, ['Resize', [0.5, 3.0]]]), | |
dict(type='RandomCrop', min_side_ratio=0.1), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict(type='Pad', size=(640, 640)), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape')) | |
])) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_test.json', | |
data_prefix=dict(img_path='imgs/'), | |
test_mode=True, | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1333, 736), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
])) | |
test_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='OCRDataset', | |
data_root='data/det/textdet-thvote', | |
ann_file='textdet_test.json', | |
data_prefix=dict(img_path='imgs/'), | |
test_mode=True, | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1333, 736), keep_ratio=True), | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
])) | |
auto_scale_lr = dict(base_batch_size=16) | |
launcher = 'none' | |
work_dir = './work_dirs/dbnet_resnet18_fpnc_1200e_icdar2015' | |